Multiple solvent cleaning system

Cleaning and liquid contact with solids – Processes – Using sequentially applied treating agents

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S010000, C134S025100, C134S031000

Reexamination Certificate

active

06355113

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method and apparatus of cleaning contaminated articles and apparatus thereof and, more particularly, to the defluxing or degreasing of parts in a non-aqueous cleaning system utilizing an organic solvent for cleaning the parts and a nonflammable fluorocarbon solvent.
BACKGROUND ART
Solvent vapor phase degreasing and defluxing is a process of immersing a soiled substrate (e.g., a printed circuit board or a fabricated metal, glass, ceramic, plastic, or elastomer part or composite) into a boiling, nonflammable liquid such as a chlorocarbon or chlorofluorocarbon fluid or admixture, followed by rinsing the part in a second tank or cleaning zone by immersion or distillate spray with a clean solvent which is the same chlorocarbon or chlorofluorocarbon as used in the first cleaning zone. The parts are then dried by maintaining the cooled part in the condensing vapors until temperature has reached equilibrium.
Solvent cleaning of various types of parts generally occurs in batch, hoist-assisted batch, conveyor batch, or in-line type conveyor degreaser and defluxer equipment. Such in-line conveyor degreaser and defluxer equipment are disclosed in U.S. Pat. No. 5,007,179 (entitled “Cold Air Lock Vapor Seal”), commonly assigned to the assignee of the present invention. Parts may also be cleaned in open top defluxing or degreasing equipment, such as that disclosed in U.S. patent application Ser. No. 07/587,893, filed Sep. 25, 1990, now U.S. Pat. No. 5,075,982, also commonly assigned. In both types of equipment, the entrance and/or exit ends of the equipment are generally in open communication with both the ambient environment and the solvent within the equipment. In order to minimize the loss of solvent from the equipment by either convection or diffusion, a common practice in the art is to use water-cooled or refrigerant-cooled coils which create a condensed vapor blanket over a hot or ambient zone region in the degreaser/defluxer tank, such as disclosed in U.S. Pat. No. 4,261,111 to Rand.
Therefore, in the foregoing solvent vapor phase degreasing process, it is generally known to use a single organic chlorocarbon or chlorofluorocarbon (CFC) fluid to perform the cleaning, rinsing, and drying steps. The use of CFC-113 and Freon type solvents have been, in the past, particularly popular. However, the vapor diffusion thereof into the environment has been implicated in recent scientific studies to be one of many possible contributing causes to the undesirable global depletion of stratospheric ozone, and the production and use of such chlorofluorocarbons is currently regulated and will be phased out in the U.S. by the end of this decade.
In response to environmental concern, hydrochlorofluorocarbon (HCFC) based solvents have been developed in the last few years to provide more environmentally acceptable alternatives to CFC based vapor phase degreasing and defluxing processes. While these materials have been shown to be excellent CFC substitutes for a variety of cleaning applications, they are considered to be an interim replacement to CFCs since they still possess a small, but finite, ozone depletion potential, although it is much lower than that of the CFCs which they are replacing. Hence, these HCFC solvents are also proposed for global phaseout in the near future. It is generally believed that organic solvents which do not contain chlorine, bromine, or iodine atoms will not contribute to stratospheric ozone depletion. However, organic chemicals which do not contain the above halogen atoms, such as hydrocarbons, alcohols, esters, ethers, ketones, etc., usually contain undesirable flammability or reactivity properties. Perfluorinated hydrocarbons and hydrofluorocarbons possess many desirable solvent properties: zero ozone depletion potential; stable, non-reactive, high compatibility with plastics; good water displacement potential; generally non-toxic and inert, and ideally suited to vapor phase solvent cleaning equipment. However, perfluorocarbons have been found to be very poor solvents for many common organic and inorganic soils, e.g., fluxes. Hydrofluorocarbons offer improved but still limited cleaning ability over perfluorocarbons as the amount of fluorine content on the molecule diminishes, but low fluorine-content hydrofluorocarbons may start to exhibit undesirable flammability properties comparable to their hydrocarbon analogs.
European Patent Publication 431,458 published Jun. 12, 1991 teaches aliphatic hydrofluorocarbons of the formula C
n
F
m
H
2n+2−m
wherein 4≦n≦6 and 6≦m≦12 which are useful as cleaning compositions. The reference teaches that the aliphatic hydrofluorocarbon is the active component in the removal of the fluxes, fats and oils, and dust from soiled parts. The reference teaches that in order to increase the solvency for dissolving fluxes, an organic solvent selected from hydrocarbons, alcohols, esters, and ketones may be added in an amount from 0.5 to 30 weight percent to the aliphatic hydrofluorocarbon.
Other types of cleaning processes such as aqueous cleaning exist. Aqueous cleaning generally involves the cleaning of a substrate or a part in an aqueous solution of detergents or surfactants, followed by multiple rinsing steps with purified water. The part is then dried by lengthy evaporation in air or by energy intensive thermal drying machines. This process is not always desirable due to the high energy cost for drying and the additional capital investment and operating cost burden to provide aqueous waste water cleanup required by state and local authorities before sewering to ground water.
Another cleaning process, semi-aqueous cleaning, consists of cleaning a substrate in a hydrocarbon solvent based on, for example, terpenes, esters, or petroleum distillates having a high affinity for oils, waxes, and greases being cleaned from the parts, with or without the aid of a surfactant. The cleaned substrate is rinsed of the high boiling hydrocarbon solvent with multiple rinsing steps using purified water. The hydrocarbon solvent is phase separated back to the wash sump while the aqueous effluent must be processed before sewering to ground water. Consequently, high costs associated with drying energy and with processing waste effluent are evident, similar to the before-mentioned aqueous cleaning process. A further drawback is that the hydrocarbon solvent usually possesses a flash point and this must be carefully handled or blanketed with a nonflammable compressed gas such as nitrogen to avoid explosion. Nitrogen gas is much more fugitive than the dense vapors of a fluorocarbon contained in a condensing zone. Furthermore, in a number of applications, while the substrate to be cleaned may be compatible with the hydrocarbon solvent, some plastics or metals may be incompatible with the aqueous rinse solvent, resulting in water absorption or rusting of the substrate.
DISCLOSURE OF THE INVENTION
It is accordingly one object of the present invention to provide a non-aqueous cleaning system for degreasing or defluxing parts in an environmentally safe manner.
Another object of the invention is to provide a non-aqueous cleaning system which does not use water for rinsing, and there does not exist a necessity for aqueous waste water cleanup, and whereby said nonaqueous cleaning system can be used in cases where materials are incompatible with water.
Still a further object is to provide a non-aqueous cleaning system avoiding the need for drying by lengthy evaporation of rinsing fluid in air or by energy intensive thermal drying methods.
Yet a further object is to provide a non-aqueous cleaning system utilizing an organic liquid cleaning agent for cleaning the parts and a rinsing agent having at least a slight solubility for the organic cleaner for rinsing the organic cleaner from the part and which rinsing agent is capable of drying from the part using small amounts of energy.
A non-aqueous cleaning process for removing residual soils or surface contamination from a part, in accordance with the present inven

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple solvent cleaning system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple solvent cleaning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple solvent cleaning system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2838702

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.