Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1998-03-05
2002-04-09
Nguyen, Chanh (Department: 2675)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S164000
Reexamination Certificate
active
06369797
ABSTRACT:
BACKGROUND IN THE FIELD OF THE INVENTION
The mouse has become a common device for control of cursor movement on a CRT screen. All mice employ the principle of a contained sphere rolling on a surface, generally a flat desktop. Two counting wheels are positioned around the sphere, usually at the horizontal equator; the wheels are positioned with axes of rotation that are orthogonally at 90 degrees to each other. A third wheel is usually provided as a tensioning roller placed near the same equator on the opposite side of the sphere for the purpose of keeping the sphere in contact with the two counting wheels. The housing of a typical mouse also provides means for keeping the polar or vertical axis of the sphere stabilized during rolling motions. The housing usually exposes only the extreme bottom pole of the sphere which of course rolls on a desk or pad surface; the sphere usually protrudes from the flat underside of the mouse housing. Since the housing may carry a panel for removal and cleaning of the sphere and assorted screw holes and molding incentations, a number of smooth feet or projections are usually provided to elevate the underside slightly above a desk surface. The feet are often of slick polymer, such as teflon for ease of sliding.
A mouse also carries one or more keys which signal a computer to perform one or another action at whatever cursor location is defined at the time of the “click”. Between “click” events the cursor is free to be moved in x y screen coordinates according to the combined signals of the counting wheels which are orthogonally rotated by the sphere. Methods to count amounts of rotation at the orthogonal friction wheels have employed either analog signal acquired from rotary variable resistors on the axles of the counter wheels or digital signal usually acquired by the rotation of a slotted light interrupter disc which acts upon photoreceptors.
It can be seen that mice commonly employ two types of signal interfaces: 1. the variable signal values derived from the rolling sphere and its apparatus and 2. the keys which actuate simple on/off pulse switches.
Some mouse design has attended to ergonomics of human use, for example the housing shape has been externally rounded by some manufacturers, with the intent of fitting the shape of the palmar aspect of the relaxed hand. This has been referred to as the “Dove Bar” shape in a review article on input device ergonomics (PC Magazine, Aug. 90, p.216).
Some mice employ “ballistic” sensing, ergonomics by software design, to cause resolution accuracy of mouse movement to be variable with the speed of signalling derived from the sphere movement. Much of the ergonomic success of a mouse in a given computer application depends on how the application software design utilizes the mouse, in terms of snapping on menu choices or within an on-screen drawing.
Most computer assisted drawing softwares (CAD) have at least two methods of defining endpoints of lines with a mouse key: 1. a click to the actual cursor position or 2. a click that searches out and locks the end point to a known point of an on-screen entity—for example to one end of an arc. Usually the CAD user can also toggle the software between two dimensional cursor movement (sum of XY vectors) and orthogonal cursor movement. The orthogonal movement is simply a method of ignoring the lesser of the X or Y vectors derived from realtime mouse movement, so that the cursor moves only along the pure X or the Y vector. Such modes of operation are usually toggled by either a keyboard command or possibly by menu choice using a mouse click key.
The mouse has become an established tool in the control of screen displays. Many prefer it to a full digital pad input device, because of its portability to use on any smooth desk surface, however the status quo of mouse signaling seems to be that of pulse signals chosen by the digits (fingers) of the user, and the variable data of vectors for cursor movement derived from whole arm movement of the sphere and its counter apparatus.
OBJECTS OF THE INVENTION
It is the intent of the invention to provide additional signals from a single mouse held continuously in a single hand of a user; these signals used to alter the status of a software and cursor operation, and particularly for ease of control of toggled choices within a software, these controls having been heretofor limited to:
Keyboard commands which entail movement of a hand to the appropriate keys of a keyboard
Mouse click actions which entail either the full dedication of a mouse key to a given toggled function or movement of the cursor to a given menu choice and clicking with the assigned “menu selection” mouse key.
It is the intent of the invention to not add any plethora of mouse keys or switch sites for actuation by any fingers of the hand which holds a mouse. Three key mouses are considered to be marginally better than 2 key mouses. There are 3 fingers available while the thumb and the 5th (or little) finger are needed to grasp the sides and stabilize the mouse during movement. The addition of more than 3 keys invokes the need to move one of the 3 fingers between the more than three key choices. Such addition of “click” keys to a mouse is not a qualitative improvement and it has a downside ergonomic loss, as the user must search with fingers for the vital tactile reference points of additional keys.
With the mandate to not add tasks for the fingers of a mouse controlled in a single hand, the invention must resort to the interaction of other body parts and new mouse parts. The arm movement is devoted to mouse movement on the two dimensional flat desk surface with accuracy that should not be impeded. The mouse should have generally rigid housing, which should be stable to the grasp of a thumb and 5th finger which occasionally must lift the mouse from the desk surface in order to get the mouse back within the available “playing field” surface.
SUMMARY OF THE INVENTION
A conventional mouse has dedicated a single plane, provided in the housing configuration, for relationship to flat surface. The tracking sphere operates within the single plane, the exposed sphere surface being approximately tangential within this plane during operation. The conventional mouse is referred to henceforth as a monoplane mouse.
The invention employs multiplane facets on its underside so that whole mouse movement may provide additional signalling, depending on which facet of the mouse housing is contacted to the operating desk surface. Movement from one face or facet to another, requires only a coordinated wrist movement, tilting the mouse across the fulcrum interface between one facet and another. No finger motions are necessary, and the thumb and 5th finger continue to perform the dominant role of stabilizing from opposed sides while the mouse is carried within the curve of the palm.
The facet mouse may provide two, three, or four underside faces; more than four is geometrically feasible, of course, but offers diminishing returns of unstable size and angular separation from each other. The facets provided are, of course, cut out from the unitary single plane which is the minimum requirement for a mouse operating on a desk surface, and the facets are contiguous intersecting planes.
Just as contiguous facets of a crystal may share a single edge, point, or corner, this intersect of facets is the site employed for placement of the tracking sphere necessary for mouse operation. Therefore, a single tracking sphere and its sensing apparatus can operate in tangent for any chosen facet.
Pressure sensitive switches are provided on the faceted mouse, which are actuated when the mouse is tilted to rest on a given facet. The known condition of one or more actuated switches is sufficient to identify a single facet as the contacting surface. Since a switch as a component must be mounted on mouse housing surface, anyway, it is chosen to combine functions by the employment of switches as feet protrusions on each facet.
Generally, the faceted mouse is preferred to employ triangular facets with three points of a
LandOfFree
Multiple signaling mouse with faceted surfaces does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiple signaling mouse with faceted surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple signaling mouse with faceted surfaces will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2891786