Multiple resolution pagewidth ink jet printer including a...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S013000

Reexamination Certificate

active

06234605

ABSTRACT:

RELATED APPLICATIONS
Cross-reference is made to patent application Ser. No. 09/004,826, entitled “An Inkjet Marking Device Including a Positionable Printbar to Improve Image Output”, to William G. Hawkins et al. filed concurrently herewith, herein incorporated by reference.
FIELD OF THE INVENTION
This invention relates generally an ink jet printer and more particularly to a multiple resolution pagewidth ink jet printer including a pagewidth printbar.
BACKGROUND OF THE INVENTION
Liquid ink printers of the type frequently referred to as continuous stream or as drop-on-demand, such as piezoelectric, acoustic, phase change wax-based or thermal, have at least one printhead from which droplets of ink are directed towards a recording medium. Within the printhead, the ink is contained in a plurality of channels. Power pulses cause the droplets of ink to be expelled as required from orifices or nozzles at the end of the channels.
In a thermal ink-jet printer, the power pulse is usually produced by a heater transducer or a resistor, typically associated with one of the channels. Each resistor is individually addressable to heat and vaporize ink in the channels. As voltage is applied across a selected resistor, a vapor bubble grows in the associated channel and initially bulges from the channel orifice followed by collapse of the bubble. The ink within the channel then retracts and separates from the bulging ink thereby forming a droplet moving in a direction away from the channel orifice and towards the recording medium whereupon hitting the recording medium a drop or spot of ink is deposited. The channel is then refilled by capillary action, which, in turn, draws ink from a supply container of liquid ink.
The ink jet printhead may be incorporated into either a carriage type printer, a partial width array type printer, or a page-width type printer. The carriage type printer typically has a relatively small printhead containing the ink channels and nozzles. The printhead can be sealingly attached to a disposable ink supply cartridge. The combined printhead and cartridge assembly is attached to a carriage which is reciprocated to print one swath of information (having a height equal to the length of a column of nozzles), at a time, on a stationary recording medium, such as paper or a transparency. After the swath is printed, the paper is stepped a distance equal to the height of the printed swath or a portion thereof, so that the next printed swath is contiguous or overlapping therewith. This procedure is repeated until the entire page is printed. In contrast, the page width printer includes a stationary printhead having a length sufficient to print across the width or length of a sheet of recording medium at a time. The recording medium is continually moved past the page width printhead in a direction substantially normal to the printhead length and at a constant or varying speed during the printing process. A page width ink-jet printer is described, for instance, in U.S. Pat. No. 5,192,959.
Various printers and methods are illustrated and described in the following disclosures which may be relevant to certain aspects of the present invention.
In U.S. Pat. No. 4,748,453 to Lin et al., a method of depositing spots of liquid ink on a substrate is described. A line of information is printed in at least two passes so as to deposit spots of liquid ink on selected pixel centers in a checkerboard pattern wherein only diagonally adjacent pixel areas are deposited in the same pass.
U.S. Pat. No. 5,057,854 to Pond et al. describes modular partial bars and full width array printheads fabricated from modular partial bars. The modular partial bars include a substrate bar having a length and a plurality of printhead subunits attached to only one side of the substrate bar. The modular partial bars are used as building blocks to form full width staggered array printheads.
U.S. Pat. No. 5,160,945 to Drake describes a page width thermal ink jet printhead for an ink jet printer. The printhead is of the type assembled from fully functional roof shooter type printhead subunits.
U.S. Pat. No. 5,216,442 to Parks et al. describes an ink jet printer having a platen with a planar surface sized to hold a sheet. The platen is movably mounted for linear reciprocal movement between a sheet receiving position and a sheet releasing position.
U.S. Pat. No. 5,300,957 to Burke describes a method and apparatus for high speed interlaced printing in the direction of printhead scanning. A cylindrical drum is rotatable about a drum axis for supporting a print medium during printing. The drum is rotated about the drum axis at a predetermined speed such that alternate image-element locations are addressed by each printing element during each rotation of the drum at the predetermined rate. The drum rotates two revolutions at each printhead location along with access and all image element locations are addressed.
U.S. Pat. No. 5,572,244 to Drake et al. describes a large array or page width printhead fabricated from printhead elements or subunits having adhesivefree butting edges. Each of the printhead elements includes a heater element and a channel element bonded together by an adhesive such as an epoxy.
U.S. Pat. No. 5,541,625 to Holstun et al. and U.S. Pat. No. 5,600,351 to Holstun et al. describe an ink jet printer system which fires smaller ink droplet in a single pass print mode to achieve a print resolution of 600 dpi in the carriage scan axis along with 300 dpi resolution in the media advance axis.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, there is provided a liquid ink printer, depositing ink drops to form an image, in multiple printing resolutions, on a recording medium moving along a recording medium path. The printer includes a pagewidth printbar, including an array of ink ejecting nozzles spaced at a predetermined resolution, aligned substantially perpendicular to the recording medium path, to eject the ink drops on the recording medium during movement of the recording medium along the recording medium path, a positioning device, coupled to the pagewidth printbar, to position the printbar at a plurality of discrete locations, and a controller, coupled to the printbar and to the positioning device, to cause the positioning device to position the printbar at the plurality of discrete locations as a function of the predetermined resolution.


REFERENCES:
patent: 4009332 (1977-02-01), Van Hook
patent: 4602262 (1986-07-01), Milligan et al.
patent: 4748453 (1988-05-01), Lin et al.
patent: 5057854 (1991-10-01), Pond et al.
patent: 5160945 (1992-11-01), Drake
patent: 5216442 (1993-06-01), Parks et al.
patent: 5300957 (1994-04-01), Burke
patent: 5396274 (1995-03-01), Ortquist et al.
patent: 5541625 (1996-07-01), Holstun et al.
patent: 5572244 (1996-11-01), Drake et al.
patent: 5600351 (1997-02-01), Holstun et al.
patent: 5710582 (1998-01-01), Hawkins et al.
patent: 5745131 (1998-04-01), Kneezel et al.
patent: 5757407 (1998-05-01), Rezanka
patent: 5801722 (1998-09-01), Ueda et al.
patent: 5880757 (1999-03-01), Ta
patent: 5900891 (1999-05-01), Shimoda
patent: 406071947 (1994-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple resolution pagewidth ink jet printer including a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple resolution pagewidth ink jet printer including a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple resolution pagewidth ink jet printer including a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2456273

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.