Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter
Reexamination Certificate
2001-09-17
2002-11-12
Le, H. Thi (Department: 1773)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Particulate matter
C525S217000, C525S230000, C525S239000
Reexamination Certificate
active
06479147
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to emulsion polymers, which provide flame retardancy, and processes for making such polymers. The emulsion polymerization processes employed forms non-homogeneous particles, such as core-shell particles. More particularly, the invention is directed to a latex where the particles have a relatively hard, vinyl chloride containing core and a relatively soft acrylic shell. The latexes are usefull in coatings, as well as textile and nonwoven applications. They provide, in addition to flame retardancy, improved film forming properties, chemical resistance, abrasion resistance, and heat and/or dielectric sealability.
Currently copolymers based on ethylene and vinyl chloride are used as flame-retardant binders for woven and nonwoven fabrics. These copolymers are considered to exhibit a good overall balance of required properties. However, one of the drawbacks of this technology is that production of polymeric products based upon ethylene-vinyl chloride copolymers requires relatively expensive high pressure equipment due to the high pressure of ethylene during polymerization, and so these polymers tend to be expensive to manufacture.
Acrylate/vinyl chloride copolymers would be expected to be less expensive to manufacture, since they can be made in less expensive, lower pressure rated equipment. But, in order to deliver flame retarding properties, compositions based upon such copolymers require a relatively high chlorine content. Generally, the higher the chlorine content, the higher the minimum film-forming temperature (MFFT) and the harder or stiffer the hand. So, generally speaking, compositions based upon acrylate-vinyl chloride copolymers, where there is a high chlorine content, generally exhibit relatively high and undesirable, MFFT's. The MFFT is the temperature point at which the latex will form a continuous film. It is often desirable that the latex function, for example, as a binder at room temperature or below. Therefore, high MFFT's mean that the utility of the latex is limited.
One approach to alter the properties of emulsion polymers utilized in multiple-phase latex systems to make low MFFT latexes based on hard monomers, i.e., monomers exhibiting a relatively high polymer glass transition temperature (Tg), has been to form a soft shell (usually acrylic based) around a hard core (such as formed from styrenic or methacrylic monomers). Poly(vinyl chloride) and vinyl chloride copolymers are of particular interest as core materials due to their flame retardancy; oil, chemical. and water resistance; strength; abrasion resistance; compoundability; and low cost. However, polymers made of acrylic and methacrylic monomers, particularly those with an alkyl side chain of up to six carbon atoms, i.e., methyl through hexyl (meth)acrylates. including commercially used ethyl and n-butyl acrylates, are miscible with PVC. See D. J. Walsh et al., Polymer, 25, 495 (1984); 23, 1965 (1982); and 21, 1330 (1980).
To create core-shell structures, the multiple polymer phases must phase separate by virtue of their immiscibility, by their lack of interdiffusion, or by some other process. If phase separation does not occur or is not maintained in the finished emulsion polymeric particles, then the behavior of the polymeric particle may approach that of a particle formed from a homogeneous alloy of polymers. The result is generally inferior properties as compared to phase separated particles in which the particle morphology, or the location of the phases within the particles, can be controlled. It is understood that the level of phase separation of polymer phases in core-shell particles is never complete. Some degree of miscibility will be apparent at the interphase, and core-shell particles may be produced with significant levels of miscibility between the phases. The extent of phase separation, however, is a critical parameter in controlling the final morphology of the polymer particles, and thus the performance of the final emulsion produced. Since many common acrylate polymers are miscible with PVC, they tend not to phase separate from PVC. Thus, the particle morphologies created are often undesirable.
European Patent Application No. 0 810 240 A1 (assigned to Elf Atochem) teaches a latex in the form of particles having a vinyl chloride core and an external acrylate copolymer layer, which is for use in paints and plastisols. The external acrylate copolymer is formed from the polymerization of monomer(s) which could be alkyl methacrylates or acrylates, where the alkyl group is between 1 and 8 carbon atoms, and/or vinyl esters of mono and polycarboxylic acids, and in the presence of a vinyl chloride seed polymer via a suspension polymerization process. Although the application discloses that the weight ratio of vinyl chloride seed polymer to external monomers can be between 0.02 and 10, in fact, in all the examples, the ratios employed were 50% by weight or less. Therefore, the compositions taught by the Elf Atochem patent application would be considered not to be suitable for providing flame retardancy.
The core-shell composition of the present invention overcomes the inherent obstacles of both the ethylene—vinyl chloride copolymers and the PVC core-acrylic shell polymers such as described in European Patent Application No. 0 810 240 A1, and provides a low MFFT in conjunction with high chlorine content, thereby yielding excellent flame retardancy. Other benefits over existing technologies will become clear from the following description.
SUMMARY OF THE INVENTION
The present invention is the result of the discovery that a polymer having a high chlorine content and a relatively low MFFT can be achieved with a latex having core-shell particles having a polymeric core component of a vinyl chloride polymer or copolymer, and a shell component disposed generally about the core component. The shell component is formed from (i) an acrylate monomer and (ii) an effective amount of an acrylonitrile monomer or any monomer containing a cyano group. The amount of acrylonitrile monomer employed for shell formation is enough that it promotes separation between the shell component and the core component. Generally, the expected result of the addition of acrylonitrile is to stiffen, rather than soften a polymer, as occurs in the present invention. Further, acrylonitrile usually increases the miscibility of polymers, such as for example, polybutadiene, in polyvinyl chloride, as opposed to the effect discovered in the present invention. The resulting particles of the present invention have two or multiple phases plus a high chlorine content, so that the latex composition possesses flame retardancy characteristics useful for textile and nonwoven applications, while providing a relatively low MFFT.
The system and resulting particles comprise a vinyl chloride polymer or copolymer constituting at least one phase of the system, or core of the particles; and an acrylic ester and acrylonitrile copolymer forming at least one other phase of the system, or shell of the particles. The invention also includes systems comprising multiple secondary phases or shells. The preferred morphology of the resulting latexes is a polyvinyl chloride (PVC) core phase encapsulated by an acrylic shell phase containing acrylonitrile monomer. Other less symmetrical morphologies are also included in the scope of the present invention.
In yet another aspect, the present invention provides a multiple phase polymeric system comprising a first phase including polyvinyl chloride or vinyl chloride copolymer and a second phase that generally encapsulates the first phase. The second phase is formed from polymerizing (i) an acrylate monomer and (ii) an effective amount of an acrylonitrile monomer.
In a further aspect, the present invention provides a method for promoting the separation between a first core phase and a second shell phase in a multiple phase polymeric system adapted for forming core-shell particles. The method comprises copolymerizing a vinyl chloride monomer to form the first core p
Lubnin Alexander V.
Stanislawezyk Vic
Dunlap Thoburn T.
Le H. Thi
Noveon IP Holdings Corp.
LandOfFree
Multiple phase polymeric vinyl chloride systems and related... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiple phase polymeric vinyl chloride systems and related..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple phase polymeric vinyl chloride systems and related... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2983123