Chemistry: analytical and immunological testing – Automated chemical analysis
Reexamination Certificate
2000-01-26
2002-07-16
Drodge, Joseph W. (Department: 1723)
Chemistry: analytical and immunological testing
Automated chemical analysis
C422S063000, C422S105000, C435S006120, C435S287200, C435S287300, C436S043000, C436S180000, C436S518000, C436S808000, C536S025300
Reexamination Certificate
active
06420180
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to arrays, particularly polynucleotide arrays such as DNA arrays, which are useful in diagnostic, screening, gene expression analysis, and other applications.
BACKGROUND OF THE INVENTION
Polynucleotide arrays (such as DNA or RNA arrays), are known and are used, for example, as diagnostic or screening tools. Such arrays include regions of usually different sequence polynucleotides arranged in a predetermined configuration on a substrate. These regions (sometimes referenced as “features”) are positioned at respective locations (“addresses”) on the substrate. The arrays, when exposed to a sample, will exhibit an observed binding pattern. This binding pattern can be detected upon interrogating the array. For example all polynucleotide targets (for example, DNA) in the sample can be labeled with a suitable label (such as a fluorescent compound), and the fluorescence pattern on the array accurately observed following exposure to the sample. Assuming that the different sequence polynucleotides were correctly deposited in accordance with the predetermined configuration, then the observed binding pattern will be indicative of the presence and/or concentration of one or more polynucleotide components of the sample.
Biopolymer arrays can be fabricated by depositing previously obtained biopolymers (such as from synthesis or natural sources) onto a substrate, or by in situ synthesis methods. Methods of depositing obtained biopolymers include loading then touching a pin or capillary to a surface, such as described in U.S. Pat. No. 5,807,522 or deposition by firing from a pulse jet such as an inkjet head, such as described in PCT publications WO 95/25116 and WO 98/41531, and elsewhere. Such a deposition method can be regarded as forming each feature by one cycle of attachment (that is, there is only one cycle at each feature during which the previously obtained biopolymer is attached to the substrate). For in situ fabrication methods, multiple different reagent droplets are deposited by pulse jet or other means at a given target location in order to form the final feature (hence a probe of the feature is synthesized on the array substrate). The in situ fabrication methods include those described in U.S. Pat. No. 5,449,754 for synthesizing peptide arrays, and described in WO 98/41531 and the references cited therein for polynucleotides, and may also use pulse jets for depositing reagents. The in situ method for fabricating a polynucleotide array typically follows, at each of the multiple different addresses at which features are to be formed, the same conventional iterative sequence used in forming polynucleotides from nucleoside reagents on a support by means of known chemistry. This iterative sequence can be considered as multiple ones of the following attachment cycle at each feature to be formed: (a) coupling a selected nucleoside (a monomeric unit) through a phosphite linkage to a functionalized support in the first iteration, or a nucleoside bound to the substrate (i.e. the nucleoside-modified substrate) in subsequent iterations; (b) optionally, but preferably, blocking unreacted hydroxyl groups on the substrate bound nucleoside; (c) oxidizing the phosphite linkage of step (a) to form a phosphate linkage; and (d) removing the protecting group (“deprotection”) from the now substrate bound nucleoside coupled in step (a), to generate a reactive site for the next cycle of these steps. The functionalized support (in the first cycle) or deprotected coupled nucleoside (in subsequent cycles) provides a substrate bound moiety with a linking group for forming the phosphite linkage with a next nucleoside to be coupled in step (a). Final deprotection of nucleoside bases can be accomplished using alkaline conditions such as ammonium hydroxide, in a known manner. Conventionally, a single pulse jet or other deposition unit is assigned to deposit a single monomeric unit.
The foregoing chemistry of the synthesis of polynucleotides is described in detail, for example, in Caruthers, Science 230: 281-285, 1985; Itakura et al.,
Ann. Rev. Biochem
. 53: 323-356; Hunkapillar et al.,
Nature
310: 105-110, 1984; and in “Synthesis of Oligonucleotide Derivatives in Design and Targeted Reaction of Oligonucleotide Derivatives”, CRC Press, Boca Raton, Fla., pages 100 et seq., U.S. Pat. No. 4,458,066, U.S. Pat. No. 4,500,707, U.S. Pat. No. 5,153,319, U.S. Pat. No. 5,869,643, EP 0294196, and elsewhere. The phosphoramidite and phosphite triester approaches are most broadly used, but other approaches include the phosphodiester approach, the phosphotriester approach and the H-phosphonate approach. The substrates are typically functionalized to bond to the first deposited monomer. Suitable techniques for functionalizing substrates with such linking moieties are described, for example, in Southern, E. M., Maskos, U. and Elder, J. K., Genomics, 13, 1007-1017, 1992.
In the case of array fabrication, different monomers may be deposited at different addresses on the substrate during any one cycle so that the different features of the completed array will have different desired biopolymer sequences. One or more intermediate further steps may be required in each cycle, such as the conventional oxidation and washing steps in the case of in situ fabrication of polynucleotide arrays.
In array fabrication, the quantities of polynucleotide available are usually very small and expensive. Additionally, sample quantities available for testing are usually also very small and it is therefore desirable to simultaneously test the same sample against a large number of different probes on an array. These conditions require use of arrays with large numbers of very small, closely spaced features. It is important in such arrays that features actually be present, that they are put down as accurately as possible in the desired target pattern, are of the correct size, and that the DNA is uniformly coated within the feature. If any of these conditions are not met within a reasonable tolerance, the results obtained from a given array may be unreliable and misleading. This of course can have serious consequences to diagnostic, screening, gene expression analysis or other purposes for which the array is being used.
However, in any system used to fabricate arrays with the required small features, there is inevitably some degree of error, either fixed (and hence repeated) and/or random. In the case of both the deposition of previously obtained biopolymers, but particularly in the in situ fabrication method, drop deposition errors from cycle to cycle may be different and are cumulative in determining errors in the finally formed features. For example, polynucleotide arrays formed by the in situ method will have actual features represented only by the region where droplets of nucleoside monomers have overlapped (that is, the intersection of the nucleoside monomer droplets deposited during multiple cycles). The present invention realizes that in the conventional in situ system where a single pulse jet deposits all of a particular nucleoside monomer unit during a cycle, a serious trajectory error in just one such pulse jet will result in a serious error in the resulting feature (that is, the feature will be seriously smaller than expected). Furthermore, if one such pulse jet fails to fire during a single cycle at a feature, the resulting feature will effectively be useless (since it will be capped in the capping step or, where no capping step is used, will be missing a nucleotide and therefore will have the wrong sequence). It has been known to use multiple firings of a same reagent from a same pulse jet, during a same cycle. While this reduces random errors which might occur during a pulse jet firing, it does not correct for a fixed trajectory error of a pulse jet, nor will it correct for failure of that pulse jet.
It would be desirable then to provide a means by which serious errors in features formed during an in situ or any array fabrication method, can be reduced. It would further be desirable if the resul
Agilent Technologie,s Inc.
Drodge Joseph W.
Stewart Gordon M.
LandOfFree
Multiple pass deposition for chemical array fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiple pass deposition for chemical array fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple pass deposition for chemical array fabrication will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2844894