Pulse or digital communications – Transceivers – Transmission interface between two stations or terminals
Reexamination Certificate
1997-08-27
2002-08-27
Pham, Chi (Department: 2631)
Pulse or digital communications
Transceivers
Transmission interface between two stations or terminals
C375S222000, C375S213000, C375S377000
Reexamination Certificate
active
06442195
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to analog front end (AFE) circuits for use in high-speed communications systems. In particular, the present invention is directed to AFEs having a number of parallel stages, each of which processes a fractional portion (frequency band) of a wideband signal by filtering, modulating, and converting such portion into a series of digital data samples. The present invention has particular applicability to ADSL modem environments.
BACKGROUND OF THE INVENTION
To provide high bit rate transmission over existing telephone subscriber loops, various modem technologies have been proposed. One of the promising solutions is the T1E1.4 Asymmetric Digital Subscriber Loop (ADSL) standard based on the Discrete Multiple Tone (DMT) technology. This standard provides up to 6.144 Mb/s transmission from the central office to a subscriber (downstream) and up to 640 kb/s transmission from the subscriber to the central office (upstream). To achieve this high bit rate transmission over existing telephone subscriber loops, advanced analog front end (AFE) devices, digital signal processing techniques, and high-speed complex digital designs are required. As a result, this pushes the current technology limit and imposes both high dollar cost and power consumption.
Among the technical challenges, AFE devices in modem applications provide the interface between the analog wave forms and the digital samples for digital hardware/software processing. In high-speed modem technologies such as ADSL, AFE devices need to operate at a very high sampling rate and high accuracy. For example, DMT technology has a signal spectrum of 1.1 MHz and requires sampling above 50 MHz if the sigma-delta analog-to-digital (ADC) method is used. This thus requires state-of-art ADC technology and imposes a high cost.
In addition to the speed requirement, the time domain signal in ADSL/DMT transmission is a summation of a large number of carriers modulated by a quadrature amplitude modulation (QAM) method. This results in a large peak-to-peak deviation. As a result, a large dynamic range and high resolution ADC is required to minimize quantization error.
There is prior art that uses multiple sigma-delta modulators to avoid high-speed quantization and its associated cost and consequences. One approach is proposed by P. Aziz, H. V. Sorensen, and J. Van del Spiegel who published a paper titled “Multi Band Sigma Delta analog to Digital Conversion” in the International Conference on Acoustics, Speech and Signal Processing, pp. III-249, Apr. 19-22, 1994. In this technique, sample-and-hold and quantization operations are performed in two blocks. Each sigma-delta modulator is different and operates on a different frequency band. Each sigma-delta modulator is followed by a corresponding Finite Impulse Response (FIR) filter to reject out-of-band noise. This approach is useful in some contexts, but suffers from various drawbacks, including: (1) requiring different FIR implementations, and (2) ineffective quantization noise reduction. But most importantly, it still requires high-speed sampling of the incoming signal.
A second approach is suggested by I. Galton and H. T. Jensen and disclosed in IEEE Transcations on Circuits and Systems, II, Analog and Digital Signal Processing, vol. 42, no. 12, p. 773, December 1995. Like Aziz et al., this disclosure shows that the sampling-and-hold and quantization are separated into two blocks. A Hadamard sequence is used to multiply the sampled signals before and after the sigma-delta quantization. From this scheme, the number of parallel sigma-delta modulators cannot be arbitrary due to the construction of Hadamard sequences, which makes it unattractive for systems that are designed to be upgraded easily and flexibly. Furthermore, it suffers the same limitation of high-speed sampling.
Another approach is proposed by R. Khoini-Poorfard and D. A. Johns and disclosed in IEE Electronics Letters, vol. 29, no. 19, p. 1673, September 1993. As with the other approaches, the sampling-and-hold and quantization is separated in two blocks. In this scheme, it divides the sampled sequence into different bit streams in the time domain and quantizes by different sigma-delta modulators to achieve the same effect of quantization noise reduction. Again, this technique requires high-speed sampling which is undesirable.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a flexible and upgradeable solution to convert wideband signals to high resolution digital signals such as are found in typical high-speed ADSL communications systems;
A further objective of the present invention is to provide an analog front end receiving circuit having reduced quantization errors and reduced quantization noise, so that the performance of a communications system employing such circuit can be enhanced
A further objective of the present invention is to reduce the sampling rate required in an analog front end receiving circuit, so that the conversion of a wideband analog signal to a high resolution digital signals can be accomplished with simpler and less costly Sigma-Delta modulators.
These objects and others are accomplished by providing a high speed communications transceiver which includes a novel front end receiving circuit for performing filtering and analog to digital conversion on a wideband analog data signal. The front end receiving circuit includes a number of stages that: (i) divide the wideband signal into a plurality of sub-bands, such that each sub-band includes data from a frequency band which is a fractional portion of the bandwidth of the wideband signal; and (ii) sample the sub-bands and generate digital signals corresponding to data carrying signals within such sub-band. A conventional signal processing circuit then extracts the received digital data from the digital signals from each of the plurality of sub-bands. The present invention is also compatible with software modem implementations in which the signal processing (or data pump) is located within a user host processing device instead of onboard the transceiver.
In a preferred ADSL embodiment, N sub-band filters in the front end circuit divide the analog data signal into N filtered analog data signals occupying N different frequency bands. To facilitate manufacture and flexible operation, the N frequency bands are chosen to be approximately equal to a frequency bandwidth size f, where f<F, and where F=N*f. The division of the input signal into multiple sub-bands has the added advantage of reducing clipping noise, and enables the use of lower speed sampling (instead of Nyquist sampling) analog to digital converters. Again in a preferred embodiment, the N sub-band filters are arranged in parallel stages which operate simultaneously on different frequency portion k*f of said analog signal, where k={0, 1, 2, 3, . . . N−1}. Further in a preferred embodiment, N is selected to be 2, 4, or 8, and f is approximately 138 khz, so that in a DMT environment, 32 subchannels are processed by each AFE stage.
A major contribution of the present invention lies in the reduction of quantization noise achievable in an ADSL transceiver which comes about as a result of baseband modulating the analog data signals after they are filtered to generate N frequency shifted (baseband) analog data signals. In such an implementation, N substantially identical Sigma Delta modulators and N filters can be used to effectuate an analog to digital conversion of the analog baseband signals.
The entire front end receiving circuit (or portions thereof, such as the sub-band stages) can be implemented in modular form such as in an integrated circuit. In this manner, front ends with varying performance can be conveniently fabricated and placed into communications systems with varying communications requirements. This also means that the receiving circuit of an ADSL modem employing the present invention can be upgraded in functionality easily and economically, and without affecting the remainder of a
Ku Man Ho
Liu Ming-Kang
Wang Yukuang
Bayard Emmanuel
Gross J. Nicholas
Integrated Telecom Express, Inc.
LandOfFree
Multiple low speed sigma-delta analog front ends for full... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiple low speed sigma-delta analog front ends for full..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple low speed sigma-delta analog front ends for full... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953044