Multiple interface scripting language

Data processing: software development – installation – and managem – Software program development tool – Programming language

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C717S114000, C717S116000, C717S117000, C717S141000, C717S142000, C717S143000

Reexamination Certificate

active

06658646

ABSTRACT:

FIELD OF THE INVENTION
The invention is directed toward a scripting language especially well adapted for writing scripts that (when run on a machine) generate, e.g., a liaison interface between a user and an existing user interface, and more particularly to such a scripting language that includes an integration construct data structure that permits commands from discrete user interfaces to be integrated in a single script (that when executed by a machine isolate the user from direct interaction with the discrete interfaces).
BACKGROUND OF THE INVENTION
A script is a sequence of commands that are to be interpreted, i.e., executed by a program running on a processor, as contrasted with a program that is compiled into the machine code of a processor and then directly executed by that processor. A script can be generated using a text editor or a Graphical User Interface (GUI) adapted to the scripting language.
Large systems often include monitoring systems that permit one or more users to monitor the performance of the system in general, and to specifically monitor the state of one or more parameters of the large system. In some instances, the manner in which the monitoring system delivers information to the user can be a burden.
An example of the large system discussed above is a wireless communication network that provides wireless communications service to a wireless unit that is situated within a geographic region. A Mobile Switching Center (MSC) is responsible for, among other things, establishing and maintaining calls between wireless units and calls between a wireless unit and a wireline unit . As such, the MSC interconnects the wireless units within its geographic region with a public switched telephone network (PSTN). The geographic area serviced by the MSC is divided into spatially distinct areas called “cells.” In a schematic block diagram, each cell could be schematically represented by one hexagon in a honeycomb pattern. But, in practice, each cell has an irregular shape that depends on the topography of the terrain surrounding the cell. Typically, each cell contains a base station, which comprises the radios and antennas that the base station uses to communicate with the wireless units in that cell. The base stations also comprise the transmission equipment that the base station uses to communicate with the MSC in the geographic area via communication links. One cell site may sometimes provide coverage for several sectors. Here, cells and sectors are referred to interchangeably.
In a wireless cellular communications system, a base station and a wireless unit communicate voice and/or data over a forward link and a reverse link, wherein the forward link carries communication signals over at least one forward channel from the base station to the wireless unit and the reverse link carries communication signals on at least one reverse channel from the wireless unit to the base station. There are many different schemes for determining how wireless units and base stations communicate in a cellular communications system. For example, wireless communications links between the wireless units and the base stations can be defined according to different radio protocols, including time-division multiple access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA) and others.
Within the geographic region, the MSC switches a call between base stations in real time as the wireless unit moves between cells, referred to as a handoff. Currently, in FDMA, TDMA, CDMA and GSM, cell site planning to determine the geographic coverage for a cell is a manually intensive task that needs constant adjustment. In planning a cell, the topology of the geographic area and a suitable antenna site is selected based on availability and zoning rules. Such a selection is typically not optimal but adequate. Drive tests and manually collecting signaling data are then performed mostly on the perimeter of the coverage area. Transmit and receive antennas and power are then adjusted in a manually iterative manner to improve the call quality. Sometimes, frequencies are swapped with neighbor cells and/or transmit power is readjusted to improve the coverage. Over time, the cell site engineers review customer complaints and cell site dropped call reports and again try to manually optimize the RF performance.
Lucent Technologies Inc. has developed a monitoring system that a user can use to change parameters of the wireless communication system as well as to extract data about it. This monitoring system can generate the TIpdunix (TI) interface, the Status Display Page (SDP) interface and/or the AUTOPLEX Recent Change & Verification Database (APXRCV) interface. These interfaces can be used individually. But typically, information extracted from one of the interfaces is used to make a decision to use a second one of the interfaces in one way or another. To use an interface, a user must start a discrete process. In a windows-based environment, each interface session has its own window.
These discrete or non-integrated interfaces to the monitoring systems pose problems for the user. Each interface has its own set of commands as well as formats for returning information to the user. These command sets and display formats are extensive. This burdens the user's memory. Moreover, the SDP interface returns information in a manner that requires the user to interpret a combination of the foreground and background colors, as well as whether the associated text is blinking or not, in a particular region of the screen in order to determine the state of a component of a large system.
Based upon the information extracted from a first interface, the user must make a decision about whether it is appropriate to use a second interface and if so, the user must appropriately form the command to be submitted. Often, the first interface is used merely to verify that the large system is operating correctly. The user must inspect the data returned by the first interface to confirm that it is consistent with normal operation of the large system. If there is some discrepancy, it must be recognized by the user. Then, the user must determine the problem that is indicated by the discrepancy. Then, the user must take appropriate action, typically via one of the other interfaces.
While the user has the responsibility of confirming via one of the interfaces that the operation of the large system is normal, the user is essentially a prisoner to that interface. The user must continually confirm that the operation of the large system is normal by repeatedly extracting data from the large system. If the user fails to recognize a discrepancy in the data that is returned, then the user will have failed to recognize that there is a problem for which action must be taken.
In another instance, the user might use one of the interfaces to change a parameter in the large system. To confirm that the parameter change has taken effect, the user typically has to use a second interface. But there is typically a delay between the requested change of parameter and the time at which it takes effect in the large system.
To confirm that the change has taken effect, the user must repeatedly extract information from the large system via the second interface. Again, the user becomes a prisoner of the second interface until the user recognizes something in the data returned by the second interface that indicates the desired change has taken place.
Again, the TI, SDP and APXRCV interfaces each require a great deal of direct user interaction. An example of this is depicted in the unified modeling diagram of FIG.
1
.
FIG. 1
depicts interactions between a user
101
and a monitoring system
304
(to be discussed in more detail below concerning FIG.
3
), to be discussed in more detail below. Communication from the user originate from a line
102
, while communications from the monitoring system
304
originate from a line
104
. The monitoring system
304
can generate the TI, SDP and/or APXRCV interfaces discussed above.
In the unified

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple interface scripting language does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple interface scripting language, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple interface scripting language will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3159954

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.