Sheet feeding or delivering – Feeding – Multiple supplies
Reexamination Certificate
2002-05-15
2003-12-30
Bollinger, David H. (Department: 3653)
Sheet feeding or delivering
Feeding
Multiple supplies
C271S009130, C271S012000, C271S262000, C271S265040
Reexamination Certificate
active
06669186
ABSTRACT:
BACKGROUND OF THE INVENTION
Technical Field
The invention relates generally to processing of sheet-like material and, more particularly, to systems and methods that repeatedly provide requested vertically oriented sheet-like material from vertically aligned insert stations in an insert tower.
With the advent of the “Information Age,” a vast amount of personal data has become available. Along with this information comes the opportunity to more specifically target people with offers designed to address their individual needs, activities, or desires. These targeted mailings have a much higher success rate for achieving a sale than non-targeted advertisements. Naturally, businesses are eager to capitalize on this opportunity. Hence, mailings to consumers have increasingly become more advanced by including more individually targeted offers. Consequently, the process for producing a mass mailing by a company has become significantly more complicated and burdensome.
Inclusion of targeted advertising pieces has dramatically increased the number of different inserts associated with a mass mailing. One classic scenario of a mass mailing includes a company sending bills to its customers. Typically, the bills are processed along a horizontal conveyor belt and ultimately stuffed in a mailing envelope. Insert stations are arranged in a row along the raceway. Each insert station has a vertical stack of horizontally oriented mail inserts. As the bill proceeds down the raceway, each designated insert is placed on top of the stack that includes the bill any prior inserts. Thus, as the number of different inserts increases, the foot-stamp of the raceway correspondingly increases to accommodate the increasing number of differing insert stations along the raceway.
The floor space required by the current demand for inclusion of multiple inserts has increased so dramatically that the current locations for processing mass mailings have become inadequate. Therefore, a need exists for a more efficient use of space for the insertion process. Additionally, not all inserts are appropriate for all customers. Targeted inserts necessitate that some customers receive certain inserts, while other customers should receive inserts more appropriate for their individual circumstances. Hence, more efficient insert stations are required that are capable to, deliver to multiple people differing inserts.
New designs for insert stations also can create new technological obstacles. The shear numbers in today's mass mailings require optimization of every aspect of any new insert stations. Even small improvements can effect the speed and efficiency of the entire process. Consequently, any part of the insert process that can be enhanced produces significant dividends during the course of producing a mailing that includes numerous inserts.
The current design for insert stations has one vertical stack of horizontally oriented mail inserts. However, improved designs will include multiple stations capable of handling a plurality of differing inserts in the same approximate floor space. These multiple stations may include vertical towers.
Vertical stacks of horizontally oriented inserts in a vertical tower will necessitate several orientation changes from the pulling position at the insert station until delivery to the raceway. Reducing orientation changes not reduces the chance of jams, but can significantly enhance efficiency. Any enhancement in modern high speed operations can create a significant savings in the time required to complete a mailing.
As insert stations become complex, the need for an accurate determination that the system is working properly increases. A detection mechanism that can detect if an insert has been pulled is relatively simple. The detection mechanism only needs to detect the presence of an insert. However, detecting if more than insert has been pulled is more complicated.
Merely detecting the presence of an insert cannot provide enough information to determine if multiple inserts have been pulled. Therefore, a system needs to detect the number of inserts pulled. However, most inserts are relatively thin, and the deflection caused by a thin insert is typically too small to measure accurately. A mechanism that can amplify these small distances would greatly enhance the ability to accurately detect if multiple inserts have been pulled. Detection of pulling multiple inserts is important to ensure adequate inserts are available for the mailing, ensure that the postage on an individual piece of mail is sufficient, and to prevent a system shutdown when the insert stack prematurely empties.
Hence, an improved insert system is needed. This system needs to provide be able to deliver multiple inserts to differing people. In addition, the system needs to eliminate unwarranted orientation changes and can accurately detect if multiple inserts have been pulled.
BRIEF SUMMARY OF THE INVENTION
The present invention meets the needs described above by providing a multiple insert delivery system. The multiple insert delivery system conserves valuable floor space by utilizing vertical insert towers. Vertical insert towers include a plurality of insert hoppers arranged substantially vertically in the towers. The vertical arrangement of the insert hoppers allows for many more different inserts to be utilized by the system in the same floor space. Naturally, the greater number of different insert materials available allows for much more efficient targeting of consumers. Target specific materials naturally increase the effectiveness of the insert.
However, in today's mass marketing environment, every system needs to operate at peak efficiency. In a delivery system, the elimination of unnecessary changes in the flow path of the materials enhances efficiency. In order to conserve floor space, the transport mechanism with an insert tower transport should be vertically linear. Correspondingly, the insert material is aligned vertically when in the transport mechanism. Therefore, one embodiment of the present invention contemplates initially loading the insert material aligned vertically in the insert hoppers rather than the inserts lying horizontally in the hopper. The vertical alignment of the material in the hopper will eliminate one unnecessary paper direction change. Every direction change increases the probability of paper jams. Likewise, gradual direction changes decrease the probability of an insert jam. Therefore, the insert tower utilizes a multistage turn to rotate the material from a vertical alignment while in the transport mechanism to a near horizontal alignment when exiting the tower. Multistage turns greatly enhance the ability of less flexible materials to be able to make the directional transition.
A major concern of a multiple insert delivery system is the problem of pulling more than one insert from a hopper at a time. The present invention includes several features to minimize pulling multiple inserts. In one embodiment, the materials are loaded vertically into the insert hoppers forming a horizontal queue of vertically aligned inserts. A suction apparatus utilizing a vacuum accomplishes the actual pulling of an insert. The first sheet of the horizontal queue is loosened or separated from the queue by compressed air applied to the base area of the front sheet. This loosening assists the pulling mechanism with pulling only one insert. Additionally, resistance feet apply resistance to an insert when pulled. The lower the resistance feet are set, the less resistance the feet apply to an insert. Firm insert materials need less resistance when being pulled than flimsier material require. The resistance feet can be adjusted accordingly. Furthermore, the distance of the insert material from the pulling mechanism can be adjusted. The closer the suction cups of the suction apparatus are to the insert material, the greater the suction force asserted on the inserts by the vacuum. Therefore, altering this distance can assist the pulling mechanism with pulling a single insert.
In one efficiency-enhancing emb
Green, III Jay E.
Nowlin Jeffery G.
Tunink Corey Dean
Walpus Timothy J.
Bollinger David H.
First Data Corporation
LandOfFree
Multiple insert delivery systems and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiple insert delivery systems and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple insert delivery systems and methods will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3143083