Metal working – Method of mechanical manufacture – Repairing
Reexamination Certificate
1998-08-21
2003-07-29
Vidovich, Gregory (Department: 3726)
Metal working
Method of mechanical manufacture
Repairing
C029S025010, C029S426100, C029S525010, C439S195000, C285S026000, C285S029000
Reexamination Certificate
active
06598279
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to semiconductor device fabrication equipment. More specifically, the present invention relates to the use of a multiple connection socket assembly to associate various operational components of the semiconductor device fabrication equipment with various external support facilities. Particularly, the multiple connection socket assembly of the present invention facilitates the quick and simultaneous connection of a variety of external support facilities to, and disconnection of the same from, semiconductor device fabrication equipment, thereby increasing the efficiency with which non-functional semiconductor device fabrication, equipment may be serviced, repaired or replaced with functional equipment.
2. State of the Art
Typically, in semiconductor device fabrication facilities, the amount of time the fabrication equipment is operable and available to fabricate semiconductor devices is critical in determining whether large quantities of semiconductor devices may be fabricated at a relatively low cost. Typically, when the service, repair or replacement of conventional semiconductor device fabrication equipment is required, the various conduits thereof, such as the tubes, hoses, and cables (hereinafter referred to generally as “conduits”), which variously facilitate the communication of electricity, process gases, process chemicals (both liquid and vapor), water, hydraulic fluids, pressurized air, vacuums, ventilation systems and other external facilities to and from the fabrication equipment require individual disconnection therefrom and reconnection thereto. With fabrication equipment such as chemical vapor deposition (CVD) chambers, the separate disconnection and reconnection of such conduits for a chamber typically result in a lengthy down time of the fabrication equipment, which may be as much as forty-eight to seventy-two hours or more, exclusive of the amount of time required to service, repair, or replace the fabrication equipment. Following many types of repair or servicing of certain semiconductor device fabrication equipment, qualification (i.e., operational calibration) of the fabrication equipment may be required. Thus, it is typically not possible for personnel of a semiconductor device fabrication facility to replace or repair fabrication equipment such as deposition chambers in less than two or three days. Accordingly, when the replacement or repair of fabrication equipment is required, a fabrication facility typically suffers from a two to three day loss of production time, and thus throughput, during the removal of the non-functioning fabrication equipment from a clean room.
Because it is extremely cumbersome and time consuming to connect and disconnect the pieces of fabrication equipment to and from each of their various power lines, vacuum systems, chemical and gas management systems, etc., it is typically easier, more efficient and less costly for semiconductor device fabrication facilities to repair, service and qualify their fabrication equipment in-place in the clean room. However, this approach to service, or repair and requalification on of the fabrication equipment still results in an undesirable loss of production time, as well as jeopardizing the cleanliness of the clean room itself. Further, the in-place service, repair and validation of processing machinery does nothing to alleviate the loss of production time suffered by a fabrication facility when fabrication equipment remains in place, but out of service.
Thus, a method and apparatus are needed to drastically reduce the amount of time required to connect and disconnect semiconductor device fabrication equipment to and from the various external facilities that are required to properly operate the fabrication equipment. An apparatus is also needed which enables the quick removal and replacement of fabrication equipment in need of service, repair, or validation without jeopardizing the clean room environment of the fabrication facility.
SUMMARY OF THE INVENTION
The multiple-connection socket assembly of the present invention addresses each of the above-identified needs.
A first embodiment of the multiple connection socket assembly of the present invention, which is also referred to as a “socket assembly” for simplicity, includes a first member to which external conduits that communicate with various external equipment, which are also referred to as “facilities,” are attached, and a second member to which a corresponding plurality of internally extending conduits that communicate power, electrical impulses, liquids, gases, vapors, etc. to or from various components of a piece of semiconductor device fabrication equipment, such as a chemical vapor deposition (CVD) chamber, is attached. The first and second members, which are also referred to as connective structures, of the multiple connection socket interconnect to align and connect corresponding external and internally extending conduits to each other.
Exemplary external conduits that may be attached to the first member include, without limitation, electrical wiring from an external power source, one or more vacuum lines from one or more external vacuum sources, one or more pressurized air lines from an external compressed air source, one or more computer communication bus lines from one or more external computers, chemical transport lines from external process chemical sources, gas transport lines from external process gas sources, input plumbing from an external water source, and exhaust and waste lines that lead to external waste collectors.
Correspondingly, the various internally extending conduits that are attached to the second member of the socket assembly communicate power, electrical impulses, liquid, gas, vapor, etc. to their respective destinations or from their respective sources within the fabrication equipment. The second member of the socket assembly may be fixed onto the body or frame of the fabrication equipment to prevent movement of the various internally extending conduits that are attached to the second member at their points of connection therewith, which movement may prevent damage to or disassociation of the internally extending conduits from the second member.
As noted previously, the first member and, therefore, the various external conduits associated therewith, interconnect with and are disconnectable from a second member of the socket assembly and, thus, the corresponding internally extending conduits attached thereto, by means of corresponding connectors of types known in the art (e.g., various configurations of male and female connectors', sealed abutment connections, etc.) that are associated with the first and second members. For example, electrical wires that are connected to the first and second members are interconnected by conductive connectors of a known type, such as electrically conductive prongs and receptacles. Similarly, lines that convey fluids, gases and vapors, such as water lines and various chemical lines, from their respective external sources, are interconnected to corresponding internally extending conduits of the fabrication equipment such as a CVD chamber by known fluid-tight sealing connectors that prevent the escape of liquid, vapor or gas from the connections.
As the first and second members are interconnected, the various connector elements of the first member substantially simultaneously align and mate with the corresponding connector elements of the second member. In order to ease the alignment and mating of the corresponding connector elements, the first and second members preferably include cooperative alignment elements. Since the inventive multiple connection socket assembly aligns and interconnects a plurality of conduits during a single interconnection operation of the first and second members, connection and disconnection times are significantly reduced when compared with the amount of time that would otherwise be required to connect or disconnect several separate conduits.
After the fi
Micro)n Technology, Inc.
Omgba Essama
TraskBritt
Vidovich Gregory
LandOfFree
Multiple connection socket assembly for semiconductor... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiple connection socket assembly for semiconductor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple connection socket assembly for semiconductor... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3067110