Multiple-clutch device

192 clutches and power-stop control – Clutches – Operators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S048700, C192S048900

Reexamination Certificate

active

06471026

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is directed to a multiple-clutch device, possibly a double-clutch device, for arranging in a drivetrain of a motor vehicle between a drive unit and a transmission. The clutch device has a first clutch arrangement associated with a first transmission input shaft of the transmission and a second clutch arrangement associated with a second transmission input shaft of the transmission for transmitting torque between the drive unit and the transmission.
2. Discussion of the Prior Art
A clutch device of this type is known, for example, from European reference EP 0 931 951 A1. The clutch device serves to connect the drive of a motor vehicle with a multiple-speed shift transmission via two friction clutches which are preferably automatically actuated, wherein a disengagement or release system is allocated to each of these two friction clutches, so that the two friction clutches can be engaged or released independently from one another. A clutch disk of one of the two friction clutches is arranged on a central transmission input shaft so as to be fixed with respect to rotation relative to it, while a clutch disk of the other friction clutch engages at a second transmission input shaft so as to be fixed with respect to rotation relative to it. The second transmission input shaft, constructed as a hollow shaft, encloses the central transmission input shaft. The known double-clutch is arranged with a fixed thrust plate of one friction clutch at a flywheel of an internal combustion engine. To this extent, the arrangement of the double-clutch in a drivetrain substantially corresponds to the arrangement of conventional (single-) friction clutches in the drivetrain.
Double-clutch devices (called simply double-clutches) of the type mentioned above have attracted great interest recently and are generally formed of two wet or dry clutches which are switched alternately, possibly also with overlapping. Particularly in connection with a multiple-speed shift transmission, clutches of this type make it possible to carry out shifting processes between two respective transmission speeds of the transmission without interruption of tractive forces.
In principle, double-clutch devices make it possible for both clutches to be applied jointly in especially difficult starting processes, particularly those common in car racing. For this purpose, the accelerator pedal can be deflected to its stop, as the case may be, while the motor vehicle is kept essentially stationary at the same time by applying the maximum braking force until the clutch has reached its optimal transmission point. When the braking action is canceled at the moment of reaching the optimal transmission point, the vehicle is started with maximum acceleration. Starting processes of this kind are also considered for motor vehicles with a relatively weak engine under extreme starting conditions, for example, when starting on an obstruction; that is, they are not considered only for racing cars.
Obviously, starting processes of the type described above lead to high slippage with a correspondingly extensive development of heat. This presents the problem of carrying away this heat from the area of the friction clutch serving as starting clutch. Further, a correspondingly high wear of the friction clutch must be taken into account. Moreover, heating of the friction clutches is accompanied by changes in the coefficient of friction of the friction clutches, so that control of the release mechanisms of the two friction clutches, and therefore control of the two friction clutches relative to one another, can be appreciably impaired. Since inaccuracies or changes in the functional matching of the two friction clutches relative to one another caused by heat can have the result that a torque ratio not intended in the shifting process is applied to the transmission input shafts, shifting processes in the shift transmission can be subjected to load. The synchronization in the shift transmission can be overtaxed in this way, so that, in the worst case, the shift transmission can be damaged to the point of complete failure, apart from disadvantages with respect to efficiency which occur in any case. On the whole, mismatching between the two friction clutches caused by heat is incompatible with a problem-free torque transmission in shifting processes in the shift transmission without interruption of tractive force and without jerking during shifting.
Another problem area in a double-clutch device relates to starting processes carried out in opposition to an inclination, wherein the motor vehicle must be prevented from rolling backward, or those which are used when parking at the lowest possible speed, for example, for precise positioning of a motor vehicle in a parking space. The operating states mentioned above are referred to in technical circles as “hill-holding” and “creeping”. Both starting processes have in common that the friction clutch serving as starting clutch is operated, sometimes without actuation of the accelerator, over a longer period of time with slip. Although the torques to be transmitted in such starting processes lie well below those occurring under the operating conditions described above, especially in car racing, an intensive heating of the respective friction clutch or even both friction clutches can occur, resulting in the problems detailed above.
Suggestions have been made for gear-shifting strategies and shifting processes for double-clutch transmissions based on the aimed for adjustment of clutch slip (DE 196 31 983 C1) with consequent generation of friction heat. Depending on driving behavior, overheating problems of the type mentioned above cannot be ruled out.
The risk of intensive overheating exists not only in a dry friction clutch, but can also occur in so-called “wet” friction clutches, possibly in the form of a disk or plate clutch, which are operated by the action of a viscous operating medium such as hydraulic fluid. By way of example, a gear change box with two plate clutches is known from German reference DE 198 00 490 A1, wherein one plate clutch is provided for forward driving and the other for driving in reverse. DE 198 00 490 A1 is concerned primarily with providing adequate cooling of the two plate clutches using the viscous operating medium. In spite of the liquid cooling, heating of the friction clutches is also a considerable problem in plate clutches because the operating medium, which usually flows through friction facing grooves or the like to carry off the heat, cannot be guided through between the plates in optional quantity. The reason for this is that, on one hand, excessive flow through the friction facing grooves or the like would build up a counterpressure between the friction surfaces of two adjacent plates and would therefore reduce the capacity of the friction clutches to transmit torque (with a corresponding increase in slip and therefore additional generation of friction heat, so that the problem of overheating is exacerbated) and, on the other hand, the operating medium could be overheated and destroyed when flowing through between the plates. Overheating in plate clutches can result in that the friction surfaces can no longer separate from one another completely during a disengaging process and, consequently, torques can still be transmitted via the clutch which should be disengaged, so that considerable drag torques can reach the associated shift transmission. When plate clutches are used in a multiple-clutch device, especially a double-clutch device, of the type mentioned above, shifting processes could again be brought under load in the shift transmission with resulting overtaxing of the synchronization in the shift transmission.
One approach to mastering overheating problems in the area of friction clutches in case of unfavorable operating conditions, for example, with problematic starting processes in a motor vehicle, is to provide another starting element in addition to the first and second clutch arrangements which is in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple-clutch device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple-clutch device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple-clutch device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2989012

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.