Multiple access vein filter

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06793665

ABSTRACT:

BACKGROUND
1. Technical Field
This application relates to a vascular filter and more particularly to a vein filter for capturing blood clots within the vessel.
2. Background of Related Art
Passage of blood clots to the lungs is known as pulmonary embolism. These clots typically originate in the veins of the lower limbs and can migrate through the vascular system to the lungs where they can obstruct blood flow and therefore interfere with oxygenation of the blood. Pulmonary embolisms can also cause shock and even death.
In some instances, blood thinning medication, e.g. anticoagulants such as Heparin, or sodium warfarin can be given to the patient. These medications, however, have limited use since they may not be able to be administered to patients after surgery or stroke or given to patients with high risk of internal bleeding. Also, this medication approach is not always effective in preventing recurring blood clots.
Therefore, surgical methods to reduce the likelihood of such pulmonary embolisms by actually blocking the blood clot from reaching the lungs have been developed. One surgical method of treatment involved major surgery where the size of the vessel lumen was restricted by placement of ligatures or clips around the vein, e.g. the inferior vena cava which transports blood from the lower portion of the body to the heart and lungs. This prevented passage of dangerously large blood clots through the vein to the lungs. However, this approach is an invasive surgical procedure, requiring an abdominal incision and general anesthesia and frequently causing vessel thrombosis and lower extremity swelling. Also, there is a lengthy patient recovery time and additional hospital and surgeon expenses associated with this major surgery. In fact, oftentimes, the patients requiring the surgery are unhealthy and the major surgery and general anesthesia poses a risk in and of itself.
To avoid such invasive surgery, less invasive surgical techniques have been developed. These involve the placement of a mechanical barrier in the inferior vena cava. These barriers are in the form of filters and are typically inserted through either the femoral vein in the patient's leg or the right jugular vein in the patient's neck or arm under local anesthesia. The filters are then advanced intravascularly to the inferior vena cava where they are expanded to block migration of the blood clots from the lower portion of the body to the heart and lungs.
These prior filters take various forms. One type of filter is composed of coiled wires such as disclosed in U.S. Pat. Nos. 5,893,869 and 6,059,825. Another type of filter consists of legs with free ends having anchors for embedding in the vessel wall to hold the filter. These filters are disclosed, for example, in U.S. Pat. Nos. 4,688,553, 4,781,173, 4,832,055, and 5,059,205, 5,984,947 and 6,007,558.
Several factors have to be considered in designing vein filters. One factor is that the filter needs to be securely anchored to the internal vessel wall, while avoiding traumatic engagement and damage to the wall as well as damage to the neighboring abdominal aorta. Another factor is that the filter must be collapsible to a sufficiently small size to be easily maneuvered and atraumatically advanced intravascularly to the inferior vena cava or other target vessel. Thirdly, the filter should direct the blood clots to the center of the vessel to improve dissolution of the clot within the vessel by the blood flow.
It would be advantageous to provide a vein filter that satisfies the foregoing parameters. Namely, such vein filter would advantageously have sufficient anchoring force to retain the filter within the vessel while providing atraumatic contact with the vessel wall, would have a minimized insertion (collapsed) profile to facilitate delivery through the vascular system to the surgical site, and would enable migration of the captured blood clots to the center of the vessel. Moreover, it would also be advantageous to provide a filter that could simplify insertion through the femoral or the right jugular vein into the inferior vena cava.
SUMMARY
The present invention overcomes the disadvantages and deficiencies of the prior art by providing a vessel filter is provided comprising first and second filtering portions and first and second anchoring portions. A transverse dimension of the first filtering portion in an expanded configuration is less than a transverse dimension of the anchoring portion in an expanded configuration, and a transverse dimension of the second filtering portion is less than a transverse dimension of the second anchoring portion. The first and second filtering portions are positioned closer to each other than the first and second anchoring portions, and the anchoring portions are formed on first and second opposite portions of the vessel filter. Preferably a sleeve is positioned between the first and second filter portions.
Preferably the filtering portions and the anchoring portions are formed by three wires and a first anchoring member extends from the first anchoring portion and a second anchoring member extends from the second anchoring portion, each anchoring member having first and second opposing sharpened ends for engaging the vessel wall. In a collapsed configuration of the vessel filter the three wires are preferably in an elongated configuration, substantially parallel to a longitudinal axis of the filter.
Preferably, the transverse dimensions of the first and second anchoring portions are substantially equal and the transverse dimensions of the first and second filtering portions are substantially equal, and each of the filtering portions progressively increases in diameter towards its respective anchoring portion.
The present invention also provides a surgical apparatus comprising a vessel filter having a first portion, a second portion and an intermediate portion between the first and second portions, wherein the first portion increases in diameter from the intermediate portion towards a first end, and the second portion increases in diameter from the intermediate portion towards a second end, and a region closer to the intermediate portion forms a filtering portion. The filter is formed by at least one wire, each wire forming a part of the first, second and intermediate portions. Preferably, a retaining sleeve is provided at the intermediate portion to retain the at least one wire. A tubular anchoring member preferably extends from the first and second portions and has opposing sharpened ends to engage the vessel wall.
The present invention also provides a method of implanting a vein filter in the inferior vena cava of a patient comprising the steps of:
inserting a catheter through a femoral vein or an internal jugular vein having a filter positioned therein in a collapsed configuration so that a first, second and third wire of the filter are in a substantially elongated configuration;
delivering cold saline into the catheter to maintain the filter in the collapsed configuration;
releasing the filter from the catheter to enable the filter to move to an expanded configuration in response to warming by exposure to body temperature, in the expanded configuration a pair of mounting portions expand to a first diameter and a pair of filtering portions expand to a second smaller diameter.
The method may further comprise the steps of opening a valve to enable infusion of cold saline into the catheter. Preferably, the step of releasing the filter comprises withdrawing the catheter to initially eject a first of the pair of mounting portions and a first of the pair of filter portions.


REFERENCES:
patent: 3952747 (1976-04-01), Kimmell, Jr.
patent: 4425908 (1984-01-01), Simon
patent: 4494531 (1985-01-01), Gianturco
patent: 4512338 (1985-04-01), Balko et al.
patent: 4619246 (1986-10-01), Molgaard-Nielsen et al.
patent: 4688553 (1987-08-01), Metals
patent: 4727873 (1988-03-01), Mobin-Uddin
patent: 4781177 (1988-11-01), Lebigot
patent: 4793348 (1988-12-01), Palmaz
patent: 4817600 (1989-04-01), Herms et al.
patent: 4832055 (1989-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple access vein filter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple access vein filter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple access vein filter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3220966

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.