Multimode multi-track optical recording system

Incremental printing of symbolic information – Light or beam marking apparatus or processes – Scan of light

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06646669

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to multimode multi-track optical reading and recording using multimode laser diodes.
BACKGROUND OF THE INVENTION
Semiconductor laser diodes are available as single mode or multimode diodes. The radiation emissions of single mode laser diodes are effectively modelled as point sources and are diffraction limited in their divergence on all axes. In contrast, multimode diodes typically have laser junctions which emit radiation along stripes having an elongated axis and a short axis; for this reason multimode diodes are often referred to as “stripe” type laser diodes. Multimode laser diodes are diffraction limited in the direction perpendicular to the junction (their short axis), but have non-diffraction limited divergence in the direction parallel to the laser junction (their elongated axis).
The region through which radiation emitted from a diode's laser junction is permitted to escape into the environment surrounding the diode is referred to as the “emitting aperture” of the diode. The emitting aperture of a multimode diode is generally elongated and can comprise a single or continuous stripe, a collection of short stripes or even a collection of single mode laser junctions electrically connected in parallel. In this document, the phrases “multimode diode” and “multimode laser diode” should be understood to incorporate each of these different diode constructions. In addition, laser diodes can emit radiation of various different frequencies and any reference to “light” in this document should be understood to incorporate any radiation frequency. Furthermore, reference is made throughout this document to the “short axis” and the “elongated axis”. These axes relate to the stripe shape of the emitting aperture of a multimode diode, but are also used as convenient references to directions in space (e.g. a direction may be described as being parallel to the elongated axis).
For recording applications, the principal advantage of using multimode laser diodes is that the radiation emitted from multimode diodes can be of substantially higher power than that emitted from single mode diodes. Obviously, higher power is a desirable quality for a recording operation, where heat or optical power alter the physical characteristics of the recording media. Despite this advantageous characteristic, multimode laser diodes are often problematic to use for image recording, because of difficulty associated with their non-uniform near-field power distribution. Not only is the near-field power distribution of a multimode diode non-uniform, but it typically changes with the age and usage of the diode. In an optical recording device, this non-uniformity of the near-field power distribution leads to an unacceptable phenomenon on the recording media known as “banding”, where the recorded image may be significantly degraded. Because the non-uniform power distribution of multimode diodes may lead to data loss or corruption, most optical recording devices employ single mode laser diodes, despite their relatively low power.
Accordingly, there is a need to improve the performance of multimode laser optical recording to overcome difficulties associated with the non-uniformity in the near-field power distribution of multimode laser diodes.
Various attempts have been made in the prior art to address the non-uniformity of the near-field power distribution of multimode laser diodes. One solution to this problem is to combine several diode emitters onto a single focal area. In this manner, the overlapping or combining radiation from several diodes can be used to effectively “average out” the non-uniformities of any single diode. This “emitter combination” technique is exemplified by U.S. Pat. Nos. 5,517,359, 5,923,475, and 6,064,528, all of which employ several laser diodes to illuminate the entrance pupil of a light valve (also known as a “spatial light modulator”). U.S. Pat. No. 5,793,783 employs a similar emitter combination technique, using several diodes to directly illuminate a single spot on a recording surface.
The principal drawback with the emitter combination technique is that it is inefficient in terms of both energy and space. The energy inefficiency results from the overlap of radiation from several diodes onto a single focal area. Today's commercially available multimode laser diodes produce sufficient power to individually image many types of media (i.e. without combining radiation from several diodes). While, the redundancy of the emitter combination technique does achieve a inure uniform power distribution, it is inefficient, because an individual diode can supply sufficient energy to image the recording media, and any excess energy contributed by the overlapping radiation of several diodes is wasted. The spatial inefficiency results from the need to have several distinct diodes for each focal area.
A second technique demonstrated by the prior art to overcome the non-uniformity of the near-field distribution of multimode laser diodes is to simply image the diode's far-field power distribution rather than its near-field power distribution. This technique is exemplified in U.S. Pat. Nos. 5,745,153 and 5,995,475.
A drawback with imaging the far-field distribution of a multimode laser diode is that it requires a relatively large amount of space. For use in high resolution imaging applications, a relatively large far field pattern must be reduced to a small spot at the recording surface. To image the far-field power distribution of a laser diode and have a large amount of optical reduction requires a relatively long optical path length.
An additional drawback of imaging the far-field distribution is that it adds optical aberrations in both the short and elongated axes of the laser diode image. As mentioned above, the shape of the multimode laser diode junction causes the divergence of the diode radiation to be diffraction limited in a direction parallel to the short axis of the diode emitting aperture. Therefore, additional aberrations in the direction of the short axis of the diode emitting aperture are undesirable.
SUMMARY OF THE INVENTION
In accordance with the present invention, a monolithic array of individually addressable multimode laser diodes is employed to image the surface of a radiation sensitive material. The emitting apertures of the diodes each have a short axis and an elongated axis. Input information is received by each of the diodes and is incorporated into a radiation pattern emitted by that diode.
The radiation patterns of each diode are directed toward the radiation sensitive surface by an anamorphic optical subsystem. An anamorphic optical system has different magnification properties on its different axes. For example, a cylindrical lens has no magnification in the direction parallel to the axis of the cylinder. The anamorphic optical subsystem introduces an astigmatism into the radiation patterns of each of the diodes. At the surface of the radiation sensitive material, the astigmatism introduced by the anamorphic optical subsystem causes the images of the emitting apertures of the diodes to be more focused on their short axes than on their elongated axes. In this mariner, the information contained in the radiation patterns can be recorded onto the radiation sensitive material without revealing their near field non-uniformities.
Advantageously, the short axis of the radiation patterns of the diodes may be substantially focused.
Preferably, the images of the emitting apertures of the diodes may be blurred on their elongated axes, such that, at the surface of the radiation sensitive material, their power distribution in their elongated axes is substantially uniform.
Preferably, the elongated axes of the images of the emitting apertures of the diodes on the radiation sensitive material may be between 1 and 5 times the size that they would have been bad they been focused at the surface of the radiation sensitive material.
Advantageously, the optical subsystem may employ at least one cylindrical lens.
Advantageously, the optica

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multimode multi-track optical recording system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multimode multi-track optical recording system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multimode multi-track optical recording system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3152242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.