Telephonic communications – Telephone line or system combined with diverse electrical... – Having transmission of a digital message signal over a...
Reexamination Certificate
2001-07-31
2004-04-20
Chan, Wing (Department: 2643)
Telephonic communications
Telephone line or system combined with diverse electrical...
Having transmission of a digital message signal over a...
C379S093250, C379S093080, C379S265090
Reexamination Certificate
active
06724869
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the integration of data communications and telephony. More specifically, the invention relates to associating data addresses with telephone numbers.
BACKGROUND OF THE INVENTION
Today many people have access to both voice communications and to data communications. Voice communications is still typically over the PSTN, including both the wireline and cellular or other mobile variants. We use the model we have for over a hundred years. We dial a telephone number and initiate a voice conference. Therefore essentially all voice communications fits into the PSTN paradigm.
The types of data communications are more varied. People have one or more e-mail addresses, one or more IP addresses which could be dynamic and changing and have multiple applications to receive data communications. These include e-mail, various “screen pops” of still images and streaming media.
Recipients with specialized hardware and software can receive integrated voice and data communications, for example with video conferencing. The sender cannot send voice and data together without having intimate knowledge of the data characteristics of the recipient.
The following paragraphs discuss voice and data delivery mechanisms. In these, the voice and data either share physical infrastructure with no logical connection, or they are tightly connected, placing a strict dependence for compatible protocol and hardware and software from sender to receiver.
Voice and Data Delivery
Digital subscriber lines are in widespread use for the delivery of both data and voice. The two common variants of digital subscriber lines are ADSL (Asynchronous Digital Subscriber Line) and HDSL (High-speed Digital Subscriber Line), generically called xDSL. As the names imply, they exist only between the central office and the subscriber's location. The technology is designed to provide a substantial amount of data transmission (up to several megabits per second) on ordinary copper distribution cables without disturbing the analog voice circuit for which the distribution was originally designed and installed. ADSL provides a greater data download (central office to subscriber) bit rate than upload (subscriber to central office) bit rate, for example, 2 megabits download, 384 kilobits upload. HDSL provides a full duplex facility for customers who need high upload as well as download bit rates. In both cases the technology provides a data path that is logically separate from the voice path. The data cannot be directed to specific addresses based on numbers dialed over the voice circuit, nor can the voice be delivered based on any data transaction which occurs over the digital circuit. The technology is basically a splitting circuit at each end of a copper path that allows both analog voice and digital data (processed by modems) to share the facility. The degree of isolation is indicated by the fact that if the splitting equipment loses power, the voice channel continues to work.
Simultaneous Voice and Data (SVD) protocols share voice and data, allowing users to employ a single line for both voice and data communications. With SVD technology, Personal Computer users with a single standard telephone line can send a file while talking to the receiving party, work on shared files while discussing the content, or perform other collaborative tasks across one line. SVD operation originates in one of two ways: users call one another and converse as usual, then drop into SVD mode when they launch a communication application; or users initiate a modem connection and the modems drop into SVD mode when the handset is picked up or the speakerphone is engaged by one of the users.
Shared voice and data is taught by many patents. U.S. Pat. No. 5,878,120, “Mechanism and method for multiplexing voice and data over a signal carrier with high bandwidth efficiency” describes a method and apparatus for such SVD function. This includes a micro-controller having multiple operating modes, including an idle mode, an analog voice mode, a digital data mode, and a simultaneous voice and data (SVD) mode, which is provided to a data circuit terminating equipment (DCE) device designed to support multi-modal voice and/or data calls over a single analog-loop telephone line. The micro-controller contains control logic for establishing multiple logical connections and voice as well as data transmission protocols over these logical connections with another DCE, when switching from the analog voice mode to the SVD mode, and for multiplexing voice and data transmissions over these logical connections. The control logic transmits voice over a logical voice connection in nominally fixed intervals. A non-voice transmission, i.e. data or information to be exchanged, can be suspended in favor of transmitting a voice transmission. After the voice transmission is complete, the data transmission is continued. This allows multiplexing of reliable data and real-time data (e.g., voice) on a single modem link.
U.S. Pat. No. 5,592,538, “Telecommunication device and method for interactive voice and data”, teaches mixed communication by both voice and data including visual text messages during a single telephone call, with both modes of communication able to be bi-directional. It also teaches an interactive voice and data (IVD) subscriber system, any two of which may communicate with each other, and optionally an IVD host system which allows IVD subscriber system unit to IVD host communication. The IVD subscriber system and host are compatible with the PSTN for voice communication. Data management facilities are provide for enabling the exchange of data with other devices. Data from a database may be selected, transmitted, received, merged, displayed and otherwise used by devices.
U.S. Pat. No. 5,025,443, “Digital data over voice communication”, teaches another method of voice and data sharing on a single twisted pair line. In the apparatus taught by this patent, a coding circuit is used to encode the data signal prior to transmission. The coding circuit encodes the data signal in such a manner that the voice band is vacated and the signal energy is spread over a relatively broad frequency spectrum. Thus, the energy is not clustered in a narrow band and cross-talk is minimized. Baseband transmission is employed so that signal errors are avoided. No modulators or demodulators are required. The empty voice band can then be used for base band “Plain Old Telephone System” (POTS) communication.
Cellular Systems
First-generation cellular telephone systems, e.g. AMPS (American Mobile Phone System), an analog system, provided no data facilities. These systems accommodated data only as voice band data which was converted to analog tones by modems external to the mobile unit, e. g. in a mobile facsimile attachment. As a result of this method the data was always delivered to the point specified by the telephone number which had been dialed, specifically to an analog telephone termination on the PSTN. At the PSTN termination a modem had to be provided to convert the voice band data into digital data. Data rates were limited to what could be accommodated through the analog CODECs which were optimized for speech, usually less than 9.6 kilobits/second.
Second-generation cellular telephone systems, e.g. Digital American Mobile Phone System (DAMPS) in the US and Global System for Mobile (GSM) globally, plus others, are data-capable because they provide for multiple mobile-unit to base station channels time-division multiplexed into each radio-frequency transmission channel. It is therefore possible to have a mobile unit use one Time Division Multiplexing (TDM) channel for speech and a second TDM channel on the same RF frequency for data. External factors such as RF energy levels, battery life, and channel efficiency have tended to limit use of this capability.
GPRS, or General Packet Radio Service, is a “generation 2.5” data adjunct to the GSM system. GPRS creates an overlay data network which attaches to the cellular system at base stations to which Packet Cont
Chapman Robert E.
Stern Edith H.
Tantawi Asser N.
Willner Barry E.
Cameron Douglas W.
Chan Wing
Dougherty Anne V.
LandOfFree
Multimodal telephone numbers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multimodal telephone numbers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multimodal telephone numbers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3245899