Multimerized DBH enhancer domains

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S091100, C435S455000

Reexamination Certificate

active

06525189

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to the field of cell type-specific gene expression.
Dopamine &bgr;-hydroxylase (DBH) is a hallmark protein of noradrenergic neurons because noradrenaline is synthesized by this enzyme. The highly restricted pattern of DBH expression in the nervous system predicts that this gene is subject to neuron-specific as well as to cell type-specific control mechanisms. Transgenic mice experiments have shown that 5.8 or 4 kb of the 5′ flanking sequences of the human DBH gene can drive expression of the reporter gene in neurons of the locus coeruleus as well as other noradrenergic neurons and adrenal chromaffin cells, albeit with some ectopic expression. More recently, comparison of reporter gene expression in transgenic animals generated by using DBH 5′ flanking regions of different lengths indicated that the upstream region between −1.1 and −0.6 kb is necessary for expression in adult and fetal noradrenergic Neurons. Using cell culture systems, we and others have demonstrated that the 5′ upstream region of the DBH gene can drive reporter gene expression in a cell-specific manner.
Deletional and site-directed mutational analyses have indicated that as little as 486 bp of the upstream sequence of the human DBH gene can direct expression of a reporter gene in a cell type-specific manner. In the 486 bp region of the human DBH gene, the distal part spanning −486 to −263 bp appears to have a cell-specific silencer function which contributed to suppression of the promoter activity in nonneuronal cells. Transient transfection assays identified the proximal part spanning −262 to +1 bp as sufficient and essential for the high-level DBH promoter activity in DBH-positive cells. In this 262 bp proximal area, four protein-binding regions (domains I to IV) have been identified by DNase I footprinting analysis. A cAMP response element (CRE), 5′-TGACGTCC-3′ (SEQ ID NO: 3), with a single base deviation from the consensus octamer motif, 5′-TGACGTCA-3′ (SEQ ID NO: 4), was shown to be critical for both the basal and cAMP-inducible transcription in DBH-expressing cell lines. This CRE is included in a composite enhancer domain structure located at −185 to −150 bp, designated domain IV, which contains several additional cis-elements such as AP1, YY 1, and two core motifs of homeodomain (HD) binding sites. Site-directed mutagenesis of each sequence motif has revealed that the CRE is essential for basal promoter activity in every cell line, YY1 is multifunctional, and the AP1-like motif may be transcriptionally inactive.
The murine paired-like HD protein, Phox2a, is selectively expressed in noradrenergic cells and is critical for development of several noradrenergic neuron populations, including the locus coeruleus. The forced expression of Phox2a robustly activates DBH promoter activity, strongly suggesting a mechanism for noradrenergic-specific promoter function. Moreover, Phox2b, which contains an HD identical to that of Phox2a, has been identified and shown to be widely coexpressed with Phox2a in both the central and peripheral nervous system. Cotransfection assays showed that Phox2a and Phox2b transactivate the DBH promoter activity with a comparable efficiency.
SUMMARY OF THE INVENTION
We have discovered that an expression construct that included multiple copies of noradrenergic-specific enhancer domains isolated from the DBH gene increased the minimal promoter activity by 100- to 200-fold in DBH-positive cell lines. Moreover, we discovered that this expression construct maintained the cell-type specificity exhibited by the natural DBH promoter.
Accordingly, the invention features an enhancer cassette having the formula [X-Y]
n
, wherein each X is independently a noradrenergic cell-specific enhancer derived from a DBH gene; Y is absent or is a mono or polynucleotide that has between one and thirty nucleotides; and n is an integer between three and fifty, inclusive. Preferably, the noradrenergic cell-specific enhancer binds specifically to Phox 2a, Phox2b, or both. Also preferably, X is independently selected from the group consisting of 5′-GTGTCATTAGTGCCAATTAGAG-3′ (SEQ ID NO: 1) and 5′-CCGCTAGACAAATGTGATTACC-3′ (SEQ ID NO: 2); Y is absent or is a mono or polynucleotide that has between one and six nucleotides; and n is between three and twenty, inclusive. In other embodiments, X includes a region that shares greater than 70% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 2 and binds to Phox2a or Phox2b.
The enhancer cassette is useful for expressing a nucleic acid molecule in a noradrenergic cell. To this end, the enhancer cassette can be combined with an RNA polymerase binding site and a transcription initiation site to form an expression construct. Additionally, the enhancer cassette and expression construct of the invention can each be a component of an expression vector, such as an adenoviral vector.
As used herein, by “nucleic acid” is meant either DNA or RNA. A “nucleic acid molecule” may be a single-stranded or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases. Unless otherwise specified, the left hand direction of the sequence of a single-stranded nucleic acid molecule is the 5′ end, and the left hand direction of double-stranded nucleic molecule is referred to as the 5′ direction.
By “promoter” is meant a region of nucleic acid, upstream from a translational start codon, which is involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A “DBH promoter” is one derived from the promoter region of a DBH gene and that, when operably linked to a heterologous nucleic acid molecule, is capable of initiating transcription of that molecule when present in a transcription medium capable of supporting transcription.
Exemplary transcription media include, for example, a mammalian cell (e.g., an immortalized cell), and a yeast cell. Also included are in vitro expression systems such as reconstituted expression medium composed of components required to support transcription, as are known in the art.
By “enhancer domain” or “domain” is meant a nucleic acid sequence that, when positioned proximate to a promoter and present in a transcription medium capable of supporting transcription, confers increased transcription activity relative to the transcription activity resulting from the promoter in the absence of the enhancer domain. By “enhancer cassette” is meant a nucleic acid sequence that includes an enhancer domain and, optionally, additional sequence that does not enhance transcription (e.g., spacer sequence).
By “multimerized enhancer domain” is meant two or more copies of a noradrenergic cell-specific enhancer domain derived from a DBH gene. Preferably, the number of copies is between three and twenty, inclusive. The enhancer domains can be in the same or opposite orientation, and can be contiguous or noncontiguous. In expression constructs having two different enhancer domains (e.g., domain A and domain B), the orientation and the 5′ to 3′ order (e.g., 5′-AABB-3′ vs. 5′-ABAB-3′) are not limitations to the invention.
By “operably linked” is meant that a nucleic acid molecule to be transcribed and an expression construct (i.e., a promoter and an enhancer domain) are connected in such a way as to permit transcription of the nucleic acid molecule in a suitable transcription medium.
By “derived from” is meant that a the nucleic acid molecule was either made or designed from a second nucleic acid molecule, the derivative retaining important functional features of the nucleic acid molecule from which it was made or designed. In the case of enhancer domains, the important features are specific binding to Phox2a and/or Phox2b and conferral of noradrenergic cell-specific expression when operably linked to a promoter. Optimization of binding and/or cell-specific expression may be performed.
By “expression construct” is meant a nucleic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multimerized DBH enhancer domains does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multimerized DBH enhancer domains, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multimerized DBH enhancer domains will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120919

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.