Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2000-09-29
2003-08-26
Evanisko, George R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06611708
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to an external defibrillator whose language of operation can be easily changed when the defibrillator is deployed for use. Defibrillators include, manual defibrillators, automatic or semi-automatic external defibrillators (“AEDs”), defibrillator/monitor combinations, advisory defibrillators and defibrillator trainers.
Sudden cardiac arrest (“SCA”) most often occurs without warning, striking people with no history of heart problems. It is estimated that more than 1000 people per day are victims of sudden cardiac arrest in the United States alone, which translates into a needless death every 2 minutes.
SCA results when the electrical component of the heart no longer functions properly; this results in an abnormal sinus rhythm. One such abnormal sinus rhythm, ventricular fibrillation (“VF”), is caused by abnormal and very fast electrical activity in the heart. VF may be treated by applying an electric shock to the patient's heart through the use of a defibrillator. The shock clears the heart of abnormal electrical activity (in a process called “defibrillation”) by producing a momentary asystole and providing an opportunity for the heart's natural pacemaker areas to restore normal function. If, however, the heart has not been pumping blood for more than 5 minutes, there is an increased likelihood that the victim either will not be resuscitated or will suffer irreversible brain damage. Quick response is therefore necessary. By providing voice and text prompts for the user, the amount of time necessary to review protocols prior to deploying the defibrillator would be reduced.
Over the last several years defibrillators have become more portable and have begun moving into the hands of first responders. As a result, equipment that was once available only in the hospital environment is now being used by police officers, flight attendants and security guards, to name a few, as part of a first-line action in the administration of first aid. The benefit of making this equipment available to the first responders is that it is more likely that a victim of SCA will receive the life saving shock within the first few critical minutes.
Additional information regarding SCA and first aid (including CPR) may be obtained from the American Heart Association internet website at www.amhrt.org. [See, also, Cummins, et al. “Improving Survival from Sudden Cardiac Arrest: The ‘Chain of Survival’ Concept” Circulation 83:1832-1847 (1991)].
Currently available external defibrillators often display instructions, status information or other information to assist the defibrillator operator in operating the defibrillator. Some external defibrillators announce such information audibly through a speaker, either in additionto displaying information or instead of displaying information. For example, the FORERUNNER® AED by Heartstream notifies the operator that a shock is advised using both audible and visual prompts and instructs the operator to deliver a shock by pressing the appropriate button. More detailed information directed to defibrillators can be found, for example, in Cameron et al. U.S. Pat. No. 5,607,454 and Cole et al. U.S. Pat. No. 5,611,815.
Prior art defibrillators are typically pre-programmed with a single language for displays or announcements. If a defibrillator programmed for use in one language must be used in a country or region where a potential user speaks a different language, the defibrillator must be reprogrammed to display and/or announce the information in a different language. Such programming and re-programming usually take place before the defibrillator is placed into service, and must take place before the defibrillator is deployed to treat a victim in an emergency. Thus it is necessary to know the language of the defibrillator operator (or user) who will be using a defibrillator prior to making the defibrillator available for use in an emergency.
In another implementation, the Hewlett-Packard CodeMaster defibrillator is provided with multiple languages in memory (typically 9-11). However, the operation language must be selected using the set-up menu which is activated using a three-key combination. Because the set-up menu inactivates the defibrillator operation, language selection is typically performed when the device is placed into service. Once the operation language has been set-up it cannot be changed again without interrupting the defibrillator operation.
In an area, such as Quebec, Canada, where more than one language is commonly spoken, not necessarily with equal proficiency, it would be desirable to have a defibrillator that adapts the language of the prompts in response to the user's indication of language proficiency. There are other geographic areas where such ad hoc language selection would also be beneficial. Additionally, as defibrillators become more commonly available, the need for the defibrillator to be able to communicate with many different potential users, particularly in an ethnically diverse community, will become increasingly important.
Further, it would be desirable to provide a mechanism to change the language of the defibrillator at a later time during operation. For example, if a second tier responder (such as an EMT) arrives who has a different language proficiency than the first tier responder, it would be advantageous to be able to change the operation language of the device without disabling the defibrillator operation.
Many other defibrillators, including manual defibrillators, and defibrillator trainers have been developed and are known in the art, although not discussed herein.
The disclosures of the patents cited herein are incorporated by reference.
What has been needed is a defibrillator where the language of the prompts, either written and/or audible, can be selected by the user at the time that the defibrillator is deployed for use in an emergency. Where the defibrillator is used as a trainer, the language of the prompts are selected by the user when the defibrillator is deployed for use in a simulated emergency, or in the training environment.
SUMMARY OF THE INVENTION
This invention provides an easy way to change the language in a defibrillator at the time the defibrillator is deployed or after the defibrillator is in use.
This invention provides an external defibrillator comprising a controller, and an energy delivery system that is operable by the controller to deliver an electrical shock from an energy source to an electrode interface. The invention further provides an instruction generator which has an input for interacting with the external defibrillator operator to select a language and an instruction generator for providing instructions to a defibrillator operator in a language Cased on the information from the instruction generator.
The defibrillator may have languages loaded into the memory. The defibrillator may also provide a multiplicity of language selection buttons that enable the user to select a language.
Alternatively, the defibrillator may be programmed to perform all instructions in more than one language. As a result, the defibrillator would operate in a multiplicity of languages sequentially.
This invention is also directed to a method of selecting the operation language of an external defibrillator where a defibrillator operator is prompted to select a language in a first prompting language. Once the defibrillator receives the selection from the operator, the defibrillator determines whether the language is available in memory and then selects the language from the defibrillator's memory. The defibrillator then uses the selected language to provide instructions to the operator.
Further the defibrillator may allow the selected language to be changed, as needed, during the operation of the defibrillator.
The method may also provide for the language to be displayed for selection visually or to be announced audibly. Additionally, the method may provide for additional languages to be displayed for selection visually or to be announced audibly.
BR
Bledsoe James Daren
Fossan Helge
Freeman Curtis W
Harris John F
Johnson David A
Evanisko George R.
Koninklijke Philips Electronics , N.V.
LandOfFree
Multilingual defibrillator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multilingual defibrillator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilingual defibrillator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3106936