Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement
Reexamination Certificate
2001-09-07
2004-05-11
Zarneke, David A. (Department: 2827)
Electricity: conductors and insulators
Conduits, cables or conductors
Preformed panel circuit arrangement
C174S254000, C174S255000, C174S256000, C361S750000, C361S751000, C361S760000, C361S761000, C257S686000
Reexamination Certificate
active
06734370
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of electronics packaging, and in particular, to high-density electronic modules for housing and interconnecting electronic components located on stacked substrate layers.
2. Description of the Related Art
Increasing the volume density of electronic packaging is crucial for reducing device sizes for a given functionality. Efforts to provide high-density electronic packaging have included three-dimensional stacking technology in an attempt to avoid the inherent geometric constraints of standard two-dimensional semiconductor integrated circuits (“ICs”). By stacking electronic modules on top of one another and providing interconnections between the modules, the multiple layers can provide additional circuit elements without extending the two-dimensional footprint beyond that of a single module. Certain embodiments have also included heat-conducting, electrically insulating layers to improve heat dissipation during operation of these stacked electronic modules.
Numerous packaging schemes have been developed for stacking silicon-based ICs to increase the volume densities of electronic devices. However, while the silicon wafers of the silicon-based ICs provide rigidity and stability for the electronic elements, the ultimate volume densities of the multilayer stacks are inherently limited due to the thicknesses of the silicon wafers. Lapping off excess silicon from the back side of silicon wafers before stacking has been used to decrease the thickness of the silicon layers, and hence increase the number of layers per unit height. However, this procedure is time-consuming and requires precise machining to avoid damaging the circuit elements.
SUMMARY OF THE INVENTION
In accordance with one aspect of an embodiment of the invention, a multilayer module has a plurality of active layers wherein each active layer has a flexible substrate therein. The multilayer module comprises a first active layer with a first edge. The active layer comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the first edge to the electronic element of the first active layer. The multilayer module further comprises a second active layer with a second edge. The second active layer comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the second edge to the electronic element of the second active layer. The second active layer is adhered to the first active layer so that the first edge and second edge are aligned with each other thereby forming a side of the multilayer module. The multilayer module further comprises a plurality of electrically-conductive lines along the side of the multilayer module, the lines providing electrical connection to the traces.
In accordance with another aspect of an embodiment of the invention, a method provides electrical connection to a plurality of electronic elements. The method comprises providing a first active layer The first active layer has a first edge and comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the first edge to the electronic element of the first active layer. The method further comprises adhering a second active layer to the first active layer. The second active layer has a second edge and comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the second edge to the electronic element of the second active layer. The first edge and second edge are aligned with each other thereby forming a side of the multilayer module. The method further comprises applying a plurality of electrically-conductive lines along the side of the multilayer module. The lines provide electrical connection to the traces.
In accordance with another aspect of an embodiment of the invention, a multilayer module has a plurality of active layers wherein each active layer has a flexible substrate therein. The multilayer module comprises a first active layer with a first edge. The first active layer comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the first edge to the electronic element of the first active layer. The multilayer module further comprises a second active layer with a second edge. The second active layer comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the second edge to the electronic element of the second active layer. The second active layer is adhered to the first active layer so that the first edge and second edge are aligned with each other thereby forming a side of the multilayer module. The multilayer module further comprises a segmentation layer adhered to the second active layer. The segmentation layer comprises a thermally-conductive material. The multilayer module further comprises a plurality of electrically-conductive lines along the side of the multilayer module. The lines provide electrical connection to the traces.
In accordance with another aspect of an embodiment of the invention, a method provides electrical connection to a plurality of electronic elements. The method comprises providing a first active layer The first active layer has a first edge and comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the first edge to the electronic element of the first active layer. The method further comprises adhering a second active layer to the first active layer. The second active layer has a second edge and comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces which provide electrical connection from the second edge to the electronic element of the second active layer. The first edge and second edge are aligned with each other thereby forming a side of the multilayer module. The method further comprises adhering a segmentation layer to the second active layer. The segmentation layer comprises a thermally-conductive material. The method further comprises applying a plurality of electrically-conductive lines along the side of the multilayer module. The lines provide electrical connection to the traces.
In accordance with another aspect of an embodiment of the invention, a multilayer module has a plurality of layers wherein each layer has a flexible substrate therein. The multilayer module comprises a first layer having a top side and bottom side. The first layer comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces. The multilayer module further comprises a second layer having a top side and bottom side. The second layer comprises a flexible, polymer substrate, at least one electronic circuit, and a plurality of electrically-conductive traces. The bottom side of the second layer is adhered to the top side of the first layer. The thickness of the combination of the first and second layers is less than or equal to approximately 0.005″.
In accordance with another aspect of an embodiment of the invention, a method provides electrical connection to a plurality of electronic elements. The method comprises providing a first layer having a top side and bottom side. The first layer comprises a flexible, polymer substrate, at least one electronic element, and a plurality of electrically-conductive traces. The method further comprises providing a second layer having a top side and bottom side. The second layer comprises a flexible, polymer substrate, at least one electronic el
Camien Andrew Nelson
Ozguz Volkan H.
Pepe Angel Antonio
Yamaguchi James Satsuo
Irvine Sensors Corporation
Patel I B
Zarneke David A.
LandOfFree
Multilayer modules with flexible substrates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multilayer modules with flexible substrates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilayer modules with flexible substrates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3195513