Multilayer metallization for silicon semiconductor devices inclu

Active solid-state devices (e.g. – transistors – solid-state diode – With means to control surface effects – Insulating coating

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257768, 257770, 257763, 257767, H01L 2348, H01L 2946, H01L 2962, H01L 2964

Patent

active

053693000

ABSTRACT:
A semiconductor device aluminum-containing metallization system that is particularly useful for integrated circuits (ICs) having P-type contact regions and also having a likelihood of extended exposure to elevated temperatures. Use of an aluminum/silicon diffusion barrier formed of an amorphous tungsten/silicon on such ICs is made commercially practical. A titanium or transition metal silicide layer is disposed beneath the amorphous tungsten/silicon layer, to consistently provide durable low resistance electrical contacts to P-type regions of the IC.

REFERENCES:
patent: 3465211 (1969-09-01), Adams
patent: 3906540 (1975-09-01), Hollins
patent: 4188636 (1980-02-01), Sato et al.
patent: 4350994 (1982-09-01), Perepezko et al.
patent: 4494136 (1985-01-01), Perepezko et al.
patent: 4564395 (1986-01-01), Mori et al.
patent: 4626448 (1986-12-01), Hays
patent: 4630094 (1986-12-01), Wiley et al.
patent: 4737474 (1988-04-01), Price et al.
patent: 4965656 (1990-10-01), Koubuchi et al.
patent: 5136361 (1992-08-01), Wollesen et al.
M. A. Nicolet, I. Suni and M. Finetti, "Amorphous Metallic Alloys in Semiconductor Contact Metallizations", Solid State Technology, pp. 129-133 (Dec. 1983).
David R. McLachlan, "Refractory metals Diffusion Barriers", in the undated publication by Mterials Research Corporation in which its lists McLachlin as Technical Director, Advanced Materials Division. The front page of this paper states 34th and 35th Sputter Schools, Rome, Italy Jun., 1984, Santa Barbara, Calif., Nov. 1984.
F. W. Saris, L. S. Hung, M. Nastasi, and J. W. Mayer, and B. Whitehead, "Failure temperature of amorphous Cu-Ta alloys as diffusion barriers in Al-Si contacts", Appl. Phys. Lett., vol. 46, No. 7, pp. 646-648 (1 Apr. 1985). All authors are from Cornell University, Ithaca, N.Y. 14853. Text for this paper was originally received 10 Jan. 1985.
L. S. Hung, F. W. Saris, S. Q. Wang, and J. W. Mayer, "Interactions of amorphous alloys with Si substrates and Al overlayers", J. Appl. Phys. vol. 59, No. 7, pp. 2416-2421 (1 Apr. 1986). The paper was originally received for publication 17 Sep. 1985. All of the authors are from the Department of Materials Science and Engineering, Cornell University, Ithaca, N.Y. 14853.
R. E. Thomas, J. H. Perepezko and J. D. Wiley, "Crystallization of Sputter Deposited Amorphous Metal Thin Films", Applied Surface Science, vol. 26, pp. 534-541 (1986) (Authors are from the Materials Science Center, University of Wisconsin--Madison, Madison, Wis. 53706, USA; Publisher received text 4 Jun. 1986).
L. S. Hung, E. G. Colgan, and J. W. Mayer, "Amorphous diffusion barriers in Al-Si and Au-Si contacts", J. Appl. Phys. vol. 60, No. 12, pp. 4177-4181 (15 Dec. 1986) (Authors are from the Department of Materials Science and Engineering, Cornell University, Ithaca, N.Y. 14853; the text was received by the Publisher 30 Jun. 1986).
F. C. T. So, X. A. Zhao, E. Kolawa, J. L. Tandon, M. F. Zhu, and M. A. Nicolet, "Amorphous W-Zr Films as Diffusion Barriers between Al and Si", Mat. Res. Soc. Symp. Proc., vol. 54, pp. 139-145 (1986) (one of the Authors here is from California Institute of Technology, Pasadena, Calif. 91125). The date of this Publication, this Symposium, or the Government Contracts Report referred to in this paper are not known nor is it known whether there were any prior reports under the Government Contracts cited in this paper as supporting the work reported in this paper.
M. F. Zhu, F. C. T. So and M. A. Nicolet, Thin Solid Films, 130 (1985). On page 144 of the So et al. paper on "Amorphous W-Zr Films as Diffusion Barriers between Al and Si", the authors state Previous investigations indicate that a reduction of reactivity between Al and amorphous Ni-W [26] alloy or W [27] can be achieved by intentional incorporation of nitrogen into the barrier layer during sputter deposition.
F. W. Saris, L. S. Hung, M. Nastasi and J. W. Mayer, "Stability of Thin Film Amorphous Metal Alloys", Mat. Res. Soc. Symp. Proc., vol. 54, pp. 81-89 (1986). (The precise date of publication or the symposium at which this publication was presented is not known, other than sometime in 1986.) However, Hung, Nastasi and Mayer are listed as being from the Department of Materials Science and Engineering, Cornell University, Ithaca, N.Y. 14853, USA.
R. E. Thomas, J. H. Perepezko, and J. D. Wiley, "Interfacial Reactions Between Amorphous W-Si Thin Films and Polycrystalline Overlayers", Mat Res. Soc. Symp. Proc., vol. 54, (1986 Materials Research Society). It is not known what month this paper was presented or published.
B. L. Doyle et al., "Atomic Interdiffusion in Au/amorphous Ni-Nb/Semiconductor Systems", Thin Solid films, vol. 104, pp. 69-79 (1983).
K. J. Guo et al., "Amorphous Metal Diffusion Barriers", Proc. 2nd Conf. on High Temperature Electronics and Instrumentation, (Houston, Texas, USA Dec., 7-8, 1981.
Gregg Kelly et al., "Packaging Electronics for Reliability", Automotive Engineering, pp. 29-31 (Sep. 1992).
Raymond Edward Thomas, Reactions between Amorphous W-Si Thin Films and Polycrystalline (metal) Overlayers, Doctoral Dissertation at University of Wisconsin, Section 2.2 "Literature Review on Reactions Involving Amorphous Metal Thin Films", pp. 19-25 and Section 5 Interactions Between Amorphous W-Si and Polycrystalline Al Overlayers, pp. 115 and 151-153 (1987).
Wiley et al., "High Temperature Metallization System for Solar Cells and Geothermal Probes", Sandia National Laboratories Report No. SAND80-7167 (UC63e) on work done Jan. 1, 1980 through Sep. 30, 1980 under Sandia Contract 49-1664 High Temperature Metallization System for Solar Cells and Semiconducting Devices for Geothermal Probes.
J. D. Wiley et al., "Amorphous Metallizations for High-Temperature Semiconductor Device Applications", IEEE Transactions on Industrial Electronics, vIE-29, No. 2, pp. 154-157 (May 1982).
"Amorphous Ni-N-W Film As a Diffusion Barrier Between Aluminum and Silicon"--Zhu et al--Thin Solid Films (1985) pp. 245-251.
"Amorphous Metallic Alloys in Semiconductor Contact Metallizations"--Nicolet et al--Solid State Technology/Dec. 1983. pp. 129-133.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multilayer metallization for silicon semiconductor devices inclu does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multilayer metallization for silicon semiconductor devices inclu, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilayer metallization for silicon semiconductor devices inclu will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-75653

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.