Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Heterogeneous arrangement
Reexamination Certificate
2002-03-27
2003-09-02
Ogden, Necholus (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Heterogeneous arrangement
C510S295000, C510S499000, C510S501000, C510S503000, C510S505000, C510S506000, C510S470000, C134S042000, C428S208000, C015S209100
Reexamination Certificate
active
06613732
ABSTRACT:
FIELD OF INVENTION
The present invention relates to a cleaning wipe which is multi layer fabric substrate has been impregnated with a liquid cleaning composition.
BACKGROUND OF THE INVENTION
The patent literature describes numerous wipes for both body cleaning and cleaning of hard surfaces but none describe wipes for cleaning dishware, flatware, pots and pans. U.S. Pat. Nos. 5,980,931, 6,063,397 and 6,074,655 teach a substantially dry disposable personal cleansing product useful for both cleansing and conditioning the skin and hair. U.S. Pat. No. 6,060,149 teaches a disposable wiping article having a substrate comprising multiple layers.
U.S. Pat. Nos. 5,756,612; 5,763,332; 5,908,707; 5,914,177; 5,980,922 and 6,168,852 teach cleaning compositions which are inverse emulsions.
U.S. Pat. Nos. 6,183,315 and 6,183,763 teach cleaning compositions containing a proton donating agent and having an acidic pH. U.S. Pat. Nos. 5,863,663; 5,952,043; 6,063,746 and 6,121,165 teaches cleaning compositions which are oil in water emulsions.
SUMMARY OF THE INVENTION
A single use cleaning wipe for dishwashing application comprises a water insoluble substrate comprising a top flame treated polypropylene needlepunched layer having an abrasive surface, a center absorbent cellulose core layer and a bottom fine fiber polyester layer, wherein the top layer, center layer and bottom layer are needlepunched together, impregnated with a cleaning composition containing an anionic sulfonated surfactant, an alkyl polyglucoside surfactant, an alkyl monoalkanol amide, an ethoxylated alkyl ether sulfate surfactant, a C
1
-C
4
alkanol and water.
The liquid cleaning compositions of this invention are not an emulsion and do not contain proteins, enzymes, sodium hypochlorite, dimethicone, N-methyl-2-pyrrolidone, monoalkyl phosphate or silicone based sulfosuccinate.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a cleaning wipe for dishware, flatware, pots and pans which comprises approximately:
(a) 20 wt. % to 95 wt. % of a water insoluble substrate comprising a top flame treated polypropylene needlepunched layer having an abrasive surface, a center absorbent cellulose core layer and a bottom fine fiber polyester layer, wherein the top layer, center layer and bottom layer are needlepunched together; and
(b) 5 wt. % to 80 wt. % of a liquid cleaning composition being impregnated in said water insoluble substrate, wherein said liquid cleaning composition comprises:
(i) 20 wt. % to 30 wt. % of an alkaline earth or alkali metal salt of an anionic sulfonated surfactant;
(ii) 2 wt. % to 12 wt. % of an alkali metal salt of an ethoxylated alkyl ether sulfate surfactant;
(iii) 0.5 wt. % to 10 wt. % of an alkyl polyglucoside surfactant;
(iv) 0.5 wt. % to 6 wt. % of a C
12
-C
14
alkyl monoalkanol amide such as lauryl monalkanol amide;
(v) 1 wt. % to 8 wt. % of a C
1
-C
4
alkanol;
(vi) 0 to 5 wt. %, more preferably 0.1 wt. % to 4 wt. % of a proton donating agent;
(vii) 0 to 6 wt. %, more preferably 0.1 wt. % to 4 wt. % of a polyethylene glycol;
(viii) 0 to 6 wt. %, more preferably 0.5 wt. % to 5 wt. % of sodium xylene sulfonate and/or sodium cumene sulfonate; and
(ix) the balance being water.
The present invention also relates to a cleaning wipe which comprises approximately:
(a) 20 wt. % to 95 wt. % of a water insoluble substrate comprising a top flame treated polypropylene needlepunched layer having an abrasive surface, a center absorbent cellulose core layer and a bottom fine fiber polyester layer, wherein the top layer, center layer and bottom layer are needlepunched together;
(b) 5 wt. % to 80 wt. % of a liquid cleaning composition being impregnated in said water insoluble substrate, wherein said liquid cleaning composition comprises:
(i) 2 wt. % to 12 wt. % of an alkaline earth metal salt of a sulfonate surfactant;
(ii) 2 wt. % to 12 wt. % of an alkali metal salt of a sulfonate surfactant;
(iii) 5 wt. % to 18 wt. % of an alkali metal salt of an ethoxylated alkyl ether sulfate surfactant;
(iv) 5 wt. % to 18 wt. % of an alkyl polyglucoside surfactant;
(v) 1 wt. % to 10 wt. % of an amine oxide surfactant;
(vi) 1 wt. % to 8 wt. % of a C
1
-C
4
alkanol;
(vii) 0.5 wt. % to 6 wt. % of sodium xylene sulfonate and/or sodium cumene sulfonate; and
(viii) the balance being water.
Suitable water-soluble non-soap, anionic surfactants used in the instant compositions include those surface-active or detergent compounds which contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and preferably 10 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group selected from the group of sulfonate, sulfate and carboxylate so as to form a water-soluble detergent. Usually, the hydrophobic group will include or comprise a C
8
-C
22
alkyl, alkyl or acyl group. Such surfactants are employed in the form of water-soluble salts and the salt-forming cation usually is selected from the group consisting of sodium, potassium, ammonium, magnesium and mono-, di- or tri-C
2
-C
3
alkanolammonium, with the sodium, magnesium and ammonium cations again being preferred.
Examples of suitable sulfonated anionic surfactants are the well known higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, C
8
-C
15
alkyl toluene sulfonates and C
8
-C
15
alkyl phenol sulfonates.
A preferred sulfonate is linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring is preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
Other suitable anionic surfactants are the olefin sulfonates, including long-chain alkene sulfonates, long-chain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxyalkane sulfonates. These olefin sulfonate detergents may be prepared in a known manner by the reaction of sulfur trioxide (SO
3
) with long-chain olefins containing 8 to 25, preferably 12 to 21 carbon atoms and having the formula RCH=CHR
1
where R is a higher alkyl group of 6 to 23 carbons and R
1
is an alkyl group of 1 to 17 carbons or hydrogen to form a mixture of sultones and alkene sulfonic acids which is then treated to convert the sultones to sulfonates. Preferred olefin sulfonates contain from 14 to 16 carbon atoms in the R alkyl group and are obtained by sulfonating an &agr;-olefin.
Other examples of suitable anionic sulfonate surfactants are the paraffin sulfonates containing 10 to 20, preferably 13 to 17, carbon atoms. Primary paraffin sulfonates are made by reacting long-chain alpha olefins and bisulfites and paraffin sulfonates having the sulfonate group distributed along the paraffin chain are shown in U.S. Pat. Nos. 2,503,280; 2,507,088; 3,260,744; 3,372,188; and German Patent 735,096.
Examples of satisfactory anionic sulfate surfactants are the C
8
-C
18
alkyl sulfate salts the ethoxylated C
8
-C
18
alkyl ether sulfate salts having the formula R(OC
2
H
4
)n OSO
3
M wherein n is 1 to 12, preferably 1and M is a metal cation selected from the group consisting of sodium, potassium, ammonium, magnesium and mono-, di- and triethanol ammonium ions. The alkyl sulfates may be obtained by sulfating the alcohols obtained by reducing glycerides of coconut oil or tallow or mixtures thereof and neutralizing the resultant product.
On the other hand, the ethoxylated alkyl ether sulfates are obtained by sulfating the condensation product of ethylene oxide with a C
8
-C
18
alkanol and neutralizing the resultant product. The alkyl sulfates may be obtained by sulfating the alcohols obtained by reducing glycerides of coconut oil or tallow or mixtures thereof and neutralizing the resultant product. The ethoxylated alkyl ether sulfates differ from one another
Barry Dawne
Fletcher John
Kelly Albert R.
Scheubel Gerard
Suazon Lamberta
Colgate-Palmolive Company
Nanfeldt Richard E.
Ogden Necholus
LandOfFree
Multilayer cleaning wipe does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multilayer cleaning wipe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilayer cleaning wipe will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3071486