Multilamellar coalescence vesicles (MLCV) containing...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S004100, C264S004300

Reexamination Certificate

active

06544549

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to a method of producing multilamellar coalescence vesicles (MLCVs) which contain a high incorporation of biologically active compounds, using small unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs) without steps involving multiple freeze-thawing cycles, using organic solvents or dehydration of the vesicles.
The present invention also is directed to the MLCVs produced by the present method. These MLCVs possess advantageous properties of containing higher amounts of surface and total biologically active compounds, without the use of human serum albumin (HSA), as compared to prior art multilamellar vesicles (MLVs).
Liposomes are known to be useful as carriers of biologically active compounds which facilitate the delivery of these compounds to the body. Liposomes have been evaluated as potential drug delivery systems to introduce biologically active compounds into cells. See Poznansky and Juliano,
Pharmacol. Rev
. 36, 277-336 (1984); B. E. Ryman et al.,
Essays in Biochemistry
, 16, 49 (1980). Several routes of administration have been used for the administration of liposomes, for example, intravenous, subcutaneous, intraperitoneal, and oral delivery. See Gregoriadis and Allison, eds.,
Liposomes in Biological Systems
, John Wiley & Sons, New York (1980) at pages 153-178. An important advantage of liposomal delivery is the change in tissue distribution and binding properties as compared to the free forms of the bioactive ingredient, resulting in an enhanced therapeutic index and decreased toxicity. For example, decreased nephrotoxicity has been associated with the use of liposomes containing amphotericin B or cyclosporin A. See G. Lopez-Berestein,
Ann. Int. Med
., 105, 130 (1985) and Hsieh et al.,
Transplantation Proceedings
, Vol. XVII, 1397-1400 (1985). Also, reduced cardiotoxicity and nephrotoxicity are associated with liposomes containing doxorubicin and cisplatin, respectively, as compared to the free forms of the drugs. See Rahman et al.,
Cancer Res
., 42, 1817 (1982); and Forssen et al.,
Cancer Res
., 43, 546 (1983).
It is known that, under appropriate conditions, phospholipid dispersions can spontaneously reform, in the presence of water, into closed membrane systems. Electron microscopy reveals that these closed structures are made of a number of concentric bilayers or lamellae composed of phospholipid molecules, and are known as liposomes. The usefulness of liposomes as a model membrane system arises from the fact that, as the dry phospholipids undergo a defined sequence of molecular rearrangements, there is an opportunity for an unrestricted entry of hydrophilic solutes into the interlamellae space. Similarly, sequestration of hydrophobic solutes occurs within the hydrophobic bilayers. The result is a delivery system that can contain varying amounts of cytokines or other biologically active compounds, depending on the type of interaction between the solute and the phospholipid assembly.
Many methods have been proposed for the preparation of liposomes. The classical method of making prior art liposomes, MLVs containing a biologically active compound, is to mix a lipid in an organic solvent, remove the solvent from the solution, leaving a residue, suspend the residue in a buffer containing a biologically active compound, agitate and homogenize the suspension until the MLVs which contain the biologically active compound are formed, and isolate the resulting MLVs. See Bangham et al. (1974) In
Methods in Membrane Biology
(Korn, E., ed.), pp 1-68, Plenum Press, N.Y.
One of the most widely used techniques is known as the thin film method, which involves the aqueous hydration of a dried lipid film. See Bangham et al. Briefly, lipids of the desired composition, in solution with an organic solvent, are dried in the form of a thin film on the walls of a round-bottomed flask. A biologically active compound can be included in the film at this stage. The dry film is hydrated by adding a suitable aqueous phase and gently swirling the flask. With a hydrophilic biologically active compound, an aqueous solution containing the biologically active compound is used for hydration. MLVs are formed by this procedure.
Although MLVs are produced and used in medical applications, a major problem in the manufacture of MLVs is the use of organic solvents to dissolve the lipids. Further, many biologically active compounds are incompatible with organic solvents, and the removal of organic solvents from these preparations is difficult and tedious. Additionally, to form MLVs with high entrapment of biologically active compound, the solution must be subjected to repeated freeze-thawing cycles. Large scale freeze-thawing is difficult to carry out, especially under sterile conditions. Further, to produce MLVs under sterile conditions, it is necessary to sterilize the lipid prior to placing it into solution. This sterilization process may result in the breakdown of the lipids, resulting in the formation of by-products.
The process of the present invention provides a method of producing MLCVs, which has none of the limitations of the prior art methods, and several advantages over the prior art methods. The process of the present invention allows the improved entrapment of solutes. These solutes can be biologically active compounds or any compound, such as HSA, mannitol, or glycerol, which can be entrapped by the liposomes, MLCVs, of the present invention. Examples of additional biologically active compounds useful in the present invention are pharmaceutical peptides, proteins, antigens and drugs or any biologically active compound that can be incorporated into a liposome for delivery to a subject.
The present process results in the production of MLCVs without the use of organic solvents while supplying the means for sterilizing the lipid in an aseptic process by filter sterilization. The process of the present invention can be used easily to produce a small scale production run as well as a large production run while maintaining a simple manufacturing scheme. Moreover, the MLCVs of the present invention are unique structurally in that they possess a varying degree of partially coalesced vesicles in addition to numerous lamellae. Further, the present method produces MLCVs that possess a consistent size and consistent distribution of biologically active compound with less variability than obtained using the prior art methods.
MLCVs made by the method of the present invention contain a greater amount of biologically active compound as a result of enhanced entrapment. The present MLCVs possess a greater amount of surface biologically active compound and exhibit a greater recovery of biologically active compound than the prior art MLVs. Therefore, the present method results in enhanced recovery and incorporation of biologically active compounds as compared to the prior art. In regard to the present invention, the term recovery is defined as the percent of output over input; that is, the amount of the biologically active compound that is present in products and unreacted starting materials with the remainder being lost in processing. The term incorporation as used in the present invention is defined as the percent of output that is entrapped in liposomes and is no longer free.
The process of the present invention is referred to as a coalescence process because the produced MLCVs are produced as a result of rupturing and resealing of bilayers accompanied by leakage of internal contents. This process differs from vesicle fusion in which the combining of vesicles is accompanied by the mixing of internal contents with no or minimal leakage. See Gingell, D. and Ginsberg, L. (1978), In:
Membrane Fusion
(Poste, G. & Nicolson, G. L., eds.), pp.791-833, Elsevier/North-Holland Biomedical Press, NY.; Szoka, F. (1987), In:
Cell Fusion
(Sowers, A. E., ed.), pp. 209-240, Plenum Press, NY; Nir, S., Wilschut, J. and Bentz, J. (1982),
Biochim. Biophys. Acta
688:275-278; Poste, G and Nicolson, G. L. (1978) Membrane Fusion, Elsevier/North-H

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multilamellar coalescence vesicles (MLCV) containing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multilamellar coalescence vesicles (MLCV) containing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilamellar coalescence vesicles (MLCV) containing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3031258

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.