Multifunctional macromers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S271000, C528S392000, C528S403000, C525S055000, C525S329700, C525S330300, C525S523000, C525S529000, C524S717000, C524S726000, C524S755000, C524S770000

Reexamination Certificate

active

06521719

ABSTRACT:

The present invention relates to multifunctional macromers, to a method for the manufacture thereof and to their use in unsaturated polyester resins as additives to improve mechanical properties of preparations manufactured thereof.
The conventional curable polyester resins generally comprise oligomers and comonomers, and oligomers usually consist of linear molecular chains. The viscosity of the resin increases significantly with increasing chain length of the oligomer. Thus large amounts of multidimensional comonomers are required for viscosity control of formulas, especially for applications such as spraying, dipping and roll coating. Traditionally used comonomers affect the curing reaction and the properties of the final product. Comonomers often have a low curing rate, they cause shrinkage of the film during curing, have high costs, limited shelf life and also many of them are volatile and toxic. The legislation in several countries covering environmental protection and occupational safety has tightened during the recent years and set limitations on emissions of volatile organic compounds (VOC), such as styrene, which is a commonly used comonomer in unsaturated polyester resins. Styrene content ranges from 35% to 50% in conventional resins. Several methods have been evaluated in order to reduce the amount of styrene in unsaturated polyester resins, and low styrene emission (LSE) resins have been developed with styrene contents below 35%. LSE resins may contain additives which lower the emissions, or they are suppressed resins, new monomer resins, resins with reduced styrene contents, high solids resins or resins where styrene is totally or partly replaced with another monomer. The most commonly used method to reduce styrene emissions is to use film forming additives, such as paraffin in the resins.
Oligomers with a highly branched structure and with a spherical shape constitute a family of polymers, which has been increasingly studied during recent years. These oligomers are referred to as hyperbranched polyesters having three dimensional molecular architecture and possessing starburst topology. Hyperbranched polyesters differ significantly from conventional linear oligomers, because the linear oligomer of sufficient molecular weight for polyester resins usually contains an entanglement of flexible molecular chains, usually only with two terminal functional groups on each molecule, while the hyperbranched polyester is a compact spherical molecule with many branches which carry a high number of terminal functional groups on each molecule. These unique features of the hyperbranched polyesters yield very interesting and special properties which make these compounds attractive and useful in several applications. The special shape yields the compounds favourable and different rheological properties, such as lower viscosity, when compared with the linear conventional oligomers. The high number of terminal functional groups, which can be modified, results in a variety of physical and chemical properties. Oligomers with a strongly branched structure can be used in applications such as catalysts, as carriers for drug substances in pharmaceutical industry, as pharmaceuticals, cosmetics, adhesives, coatings, composites, agricultural chemicals and as multifunctional crosslinking agents.
A series of hyperbranched (meth)acrylated polyesters with different number of terminal double bonds per molecule has been presented and methods for the manufacture thereof have been disclosed in the patent application WO 96/07688. This publication discloses a hyperbranched polyester of a polyol with 3 to 10 reactive hydroxyl groups and an aromatic polycarboxylic anhydride with 2 to 4 carboxyl groups, each hydroxyl group of the polyol forming an ester linkage with one anhydride group of the polycarboxylic anhydride, and further glycidyl (meth)acrylate or allyl glycidyl ether forming ester linkages with the remaining carboxyl groups of the anhydride and free hydroxyl groups is disclosed. Further, in the hyperbranched polyester, (meth)acrylic anhydride and/or an aliphatic carboxylic anhydride form ester linkages with free hydroxyl groups. The said hyperbranched polyesters can be used as resins which are curable by UV-radiation. The method for the manufacture of hyperbranched polyesters comprises reacting an aromatic polycarboxylic anhydride with a polyol with 3 to 10 reactive hydroxyl groups in the presence of an activating agent and reacting the obtained product with glycidyl (meth)acrylate or allyl glycidyl ether.
An object of the present invention is to provide new multifunctional macromers with a strongly branched structure.
A further object of the present invention is to provide multifunctional macromers which in unsaturated polyester applications can be used as additives or components to improve mechanical properties of the resins.
A further object of the invention is to provide multifunctional macromers which in unsaturated polyester applications require low amounts of multifunctional comonomer while the resins still retain a low viscosity, a high curing rate, an acceptable degree of curing and the final products manufactured thereof exhibit good mechanical properties, and the curing can be performed applying any suitable curing methods.
A further object of the invention is to provide a method for the manufacture of multifunctional macromers.
A further object of the invention is to provide polyester resins comprising multifunctional macromers.
The objects of the present invention are achieved by new multifunctional macromers with strongly branched structure, by a method for the manufacture thereof and by the use of them in polyester resins and by polyester resins comprising;
(1) A process for the manufacture of multifunctional macromers, characterized in that the process comprises the following steps:
a) reacting a polycarboxylic acid with 2 to 4 carboxylic groups, preferably 3 to 4 carboxylic groups, with glycidyl (methy)acrylate or allyl glycidyl ether, the amount of glycidyl (meth)acrylate or allyl glycidyl ether being at least one mole of glycidyl (meth)acrylate or allyl glycidyl ether per free carboxylic group of formed macromer, and b) reacting the product from step a) with an unsaturated, aromatic or aliphatic anhydride in an amount sufficient to esterify part or all or the free hydroxyl groups of the product from step a);
(2) A multifunctional macromer of a polycarboxylic acid comprising 2 to 4 reactive carboxylic groups and a glycidyl (meth)acrylate or allyl glycidyl ether forming ester linkages with the carboxylic groups of the acid, and further unsaturated, aromatic or aliphatic anhydride forming ester linkages with the free hydroxyl groups;
(3) A curable resin, characterized in that it comprises a multifunctional macromer according to item (2) above; and
(4) Use of a curable resin according to item (3) above for the production of coatings, adhesives, laminates, foils, thin films and reinforced composites.
It has been found that new multifunctional macromers can be obtained and manufactured. The multifunctional macromers according to the invention can be prepared by a method which comprises reacting a polycarboxylic acid with 2 to 4, preferably 3 to 4 carboxylic groups, with a glycidyl (meth)acrylate and further reacting the obtained product with an unsaturated or aliphatic anhydride preferably (meth)acrylic anhydride or acetic anhydride.
The process is a controlled stepwise divergent method wherein the synthesis starts at the center of the multifunctional macromer. The synthesis comprises at least two reactions steps.
The process comprises the following steps:
First step
a) reacting a polycarboxylic acid with 2 to 4 carboxylic groups, preferably 3 to 4 carboxylic groups, with glycidyl (meth)acrylate or allyl glycidyl ether, the amount of glycidyl (meth)acrylate or allyl glycidyl ether being at least one mole of glycidyl (meth)acrylate or allyl glycidyl ether per free carboxylic group of formed macromer, and
Second step
b) reacting the product from step a) with unsaturated, aromatic or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multifunctional macromers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multifunctional macromers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multifunctional macromers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.