Multifunctional apparatus for manufacturing mineral basalt...

Glass manufacturing – Fiber making apparatus – With designated composition of dies – bushings – or nozzles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S502000, C065S540000, C065S503000, C065S335000, C065S374130, C065S135100, C065S495000, C065S498000

Reexamination Certificate

active

06647747

ABSTRACT:

TECHNICAL FIELD
The multifunctional apparatus and method related to the art of mineral fiber manufacturing from the heat softenable rock minerals such as basalts and is capable of forming fibers to be drawn/attenuated into continuous fiber strand. More specifically, the invention discloses the apparatus designed to manufacture continuous amorphous mineral (basalt) fibers from 7 &mgr;m to 100 &mgr;m in diameter with flexible/ductile properties suitable for a variety of industrial applications. Wherein basalt fiber strand made of elemental fibers from 7 &mgr;m to 20 &mgr;m in diameter is suitable to produce corrosion resistant, high-tensile strength cables/rebars and variety of fiber reinforced composites. The coarse basalt fibers from 20 &mgr;m to 100 &mgr;m in addition suitable for Three-Dimension Fiber Reinforced Composites/Concrete (3-D RFC) and many other long-term outdoor including naval industrial applications. Basalt fibers are able to maintain their properties from the cryogenic to +700C. temperatures and exhibit high corrosion resistance in acid, salt water and alkaline cement based media's. Basalt fibers are suitable also for a variety of thermal/sound insulation products which are stable at temperatures to 700C.
BACKGROUND OF THE INVENTION
The continuous glass (basalt) fiber production based on previous designs of apparatus art are subjected to failures caused by the regular catastrophic breaking of fiber filaments after the stream of glass issued from the orifices is attenuated mechanically into continuous fibers of small diameter and then grouped into a strand. Many failures occur between the bushing and the applicator: U.S. Pat. Nos. 4,957,525; 4,886,535; 4,853,017. The past efforts to reduce breakage have emphasized the feed stock as the cause and the source of the cure.
A large number of variables are present in the art of a fiber forming process which tend to create a condition that encourages filament breakage in the fiber forming zone, see U.S. Pat. Nos. 5,312,470; 4,853,017; 4,676,813; 4,664,688; 4,488,891; 4,675,039; 4,469,499. Among other negative factor on fibers (filaments) formation is the presence of unacceptable heterogeneous glass body components containing highly stable aggregates of atoms referred to as “clusters”. The clusters appear as forerunners of nucleus of crystalline phases that cause a great percentage of the failures of continuous fiber made of natural rock basalt minerals. This factor appears to be permanent when the natural rock minerals (basalts) are used as initial raw material to manufacture mineral (basalt) fibers.
Previous Apparatus and Methods Art for Making Fiber
Numerous fiber manufacturing apparatus and methods have been disclosed in the U.S. Pat. Nos. 6,044,666; 5,954,852; 5,876,529; 5,800,676; 5,614,132; 5,601,628; 5,490,961; 5,458,822; 5,352,260; 5,312,470; 5,147,431; 5,134,179; 5,057,173; 4,964,891; 4,957,525; 4,950,355; 4,917750; 4,886,535; 4,853,017; 4,676,813; 4,664,688; 4,636,234; 4,534,177; 4,488,891 4,469,499; 4,437,869; 4,401,451; 4,398,933; 4,328,015; 4,199,336; 4,088,467; 4,009,015; 3,929,497; 3,854,986; 3,557,575; 3,475,147; 3,264,076; 3,048,640; 3,013,096.
The apparatus and methods which are disclosed in the above mentioned patents do not designed to manufacture a high-quality amorphous continuous mineral (basalt) fibers. In fact, these apparatus (methods) are not capable of preparing a homogeneous glass body from natural basalt rock minerals with acceptable properties. In particular, all disclosed apparatus, methods and bushings currently being in operation exhibit a drawback from the point of view of volatile elements degasing, glass body mixing and turbulence from flow. These items are important when preparing homogeneous glass body from natural rock minerals suitable to manufacture mineral (basalt) fibers in amorphous structure state. The above mentioned apparatus/methods that have been disclosed in the U.S. Patents are designed to manufacture continuous glass fibers made from silicate based materials with predetermined chemical composition or organic fiber from uniform composition rather than fibers—continuous fibers (roving) made from natural rock basalts. If fact, the basalt fiber roving production industry has not been developed in the USA. The apparatus/methods and bushings that are designed to manufacture mineral (basalt) fibers have been disclosed in the U.S. Pat. Nos. 6,044,666; 5,954,852; 5,954,852; 5,458,882; 5,312,470;5,123,949; 4,149,866; 4,636,234; 4,853,017; 4,822,392; 4,775,400; 4,560,606; 4,488,891; 4,343,637 and exhibit the same problems: poor volatile elements degasing, low-efficient glass body mixing and turbulence from flow. All these factors provide a negative impact on basalt fiber roving processing, therefore they have to be reduced (or even eliminated). Other wise it will be problem to prepare a homogeneous glass body from natural rock minerals. Homogeneous in terms of uniform chemical composition and viscosity which are suitable to produce high-quality continuous basalt fibers with appropriate amorphous structure.
The homogeneous glass body preparation in the glass and organic fiber industries utilizing silicate or organic based materials with predetermined chemical composition is more efficient when compared to that of basalt fiber processing, especially if glass fiber production utilizes boron oxide additives. The predetermined chemical composition of glass fiber production provides a great influence on apparatus or bushing design which are different from those designed to produce basalt fibers. The glass fiber processing is easier to run than basalt fiber manufacturing because of the difference in technology of glass body preparation. The glass body made from material with predetermined composition is need more simple operations to make it homogeneous. Furthermore some operations such as volatile elements degasing, glass body turbulent flowing or a high melting point complex oxides destruction are important for glass fiber processing with pre-determined chemical composition but not so much as for glass body made from natural rock materials.
Nevertheless the continuous basalt fibers processing utilizing natural rock basalts is still low cost (it could be even lower than E-glass fiber manufacturing) because basalt fiber processing utilizes the natural rock minerals—just ground rock from a quarry. For example from many quarries in the Northern Wisconsin/Minnesota. In particular from Dresser Trap Rock (Twin City) quarry. The variety of supplemental rock minerals are available for these basalts.
In addition basalt fibers exhibit attractive insulating properties which are superior to that of glass fibers. The cost effective E-glass fiber being currently on the market is lower in quality when compared to that of basalt fibers not only as insulating but also as reinforcement component for variety of composites because glass fiber contains a boron oxide (chemically active, high pollution) component which is from 8% to 12% in mass. The high diffusion mobility of boron atoms promote E-glass fiber deterioration, especially when exposed to attack by salt water or cement based alkaline media. E-glass (especially organic) fibers also tend to deteriorate when subjected to the action of the outdoor freeze-thaw and/or ultraviolet exposure. Therefore a cost effective E-glass fiber is not yet in use (on the USA market) for reinforced concrete applications. Basalt fibers, as opposed to glass fibers, do not contain even traces of boron oxide (B2O) and exhibit a Mechanical Performance/Price Ratio greater than that of any other glass fibers currently on the market.
Both Russian and Ukrainian apparatus (see 5040472/33 (1994); 92310003 (92); 4766933/00-33 (2)2 (89); 4823441/00-33 (22) (90); 4861059/00-33 (22) (90); 4793760/00-33 (22) (90) including USSR patents (990697; 937358; 881009; 874673; 589215) are referred to as similar to the present invention, because these apparatus/methods are designed to manufacture continuous fibers (roving) from the natural basalt rock materials. However the curren

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multifunctional apparatus for manufacturing mineral basalt... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multifunctional apparatus for manufacturing mineral basalt..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multifunctional apparatus for manufacturing mineral basalt... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3148436

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.