Communications: radio wave antennas – Antennas – Microstrip
Reexamination Certificate
1999-11-03
2001-03-06
Wong, Don (Department: 2821)
Communications: radio wave antennas
Antennas
Microstrip
C343S830000
Reexamination Certificate
active
06198439
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention forms part of the general framework of the combining of radioelectric functions in aircraft.
It can be applied especially to the making of an aircraft antenna according to the known technology of multilayer printed circuits combining, on the one hand, the functions of satellite localization of systems working in the L band of the radioelectric frequencies, known as the Global Positioning System or GPS L1 and the Global Navigation Satellite System or GLONASS and, on the other hand, the landing assistance function in the C band of radioelectric frequencies working in the Omni MLS or Microwave Landing System.
2. Description of the Prior Art
At present, the antennas related to these functions are distinct and have different technologies. If we consult the catalogs of the aeronautical antennas by RAYAN and M/A-Com, it can be seen that antennas designed for the MLS Omni system are “quarter-wave whip” type antennas while the radiating elements of the GPS L1 or GLONASS system are formed chiefly by monolayer microstrip structures of the printed-circuit patch type on substrates with high dielectric permittivity. Furthermore, when it is proposed to obtain the GLONASS function through the GPS antenna, its performance characteristics are not certified.
The aim of the invention is to overcome the above-mentioned drawbacks by proposing a single multilayer antenna structure that is very compact, adapted to aeronautical constraints and complies with the specifications of the GPS L1, GLONASS and Omni MLS functions when they are taken separately.
SUMMARY OF THE INVENTION
To this end, an object of the invention is a multifunction printed-circuit antenna for the reception of radioelectric waves sent by the GPS, GLONASS and MLS radio navigation systems, comprising first, second and third circular patches that are parallel to one another and superimposed in this order above one and the same ground plane that is parallel to them, the centers of the patches being aligned on one and the same axis z′z perpendicular to the plane of the three patches, the patches being separated from one another by thicknesses of a substrate-forming dielectric material for each of the patches, and wherein the first and second patches form, with the ground plane, the antenna structure for the reception of the GPS, GLONASS waves, the MLS antenna reception structure being formed by the third and second patches, the second patch also serving as a ground plane for the MLS antenna structure, the third patch of the MLS structure having a diameter smaller than that of the first and second patches of the GPS, GLONASS structure, and wherein the surface dimensions of the dielectric substrate between the third and second patches are smaller than those of the first and second patches and wherein it comprises a first ground wire connecting the centers of the first patch and of the second patch to the ground plane in a direction perpendicular to the ground plane, first and second output ports respectively connected at points of the first patch by metallized via holes through the thickness of the substrate which is interposed between the first patch and the ground plane and located at a determined distance d from the center of the first patch along two perpendicular directions x′x and y′y to produce in-phase quadrature signals on the first and second output ports and a second ground wire connecting the third patch, at a point located at a determined distance d′ from the center of the third patch, to the second patch along a direction perpendicular to the ground plane, a third output port being connected by a metallized via hole to the center of the third patch through thicknesses of the substrates between the first, second and third patches.
An advantage of the invention is that it makes it possible, by means of one and the same radiating element constituted by a printed-circuit antenna with two superimposed circular patches, on identical substrates, to perform the functions of the GPS L1 and GLONASS systems with radioelectric reception performance characteristics that comply with the ARINC 743A standard. The invention also has the advantage of making it possible to obtain the Omni MLS function with only one circular patch printed-circuit antenna with central reception working in a higher mode, the TM020 mode, whose radiation is of the single pole type, thus enabling a combining of the radiating elements by superimposition.
REFERENCES:
patent: 4072952 (1978-02-01), Demko
patent: 4218682 (1980-08-01), Yu
patent: 5003318 (1991-03-01), Berneking et al.
patent: 5041838 (1991-08-01), Liimatainen et al.
patent: 0 362 079 (1990-04-01), None
Dufrane Philippe
Roy Pascal
"Thomson-CSF"
Clinger James
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Wong Don
LandOfFree
Multifunction printed-circuit antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multifunction printed-circuit antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multifunction printed-circuit antenna will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2497688