Multicombination vehicle and method for transporting a...

Material or article handling – Process – Of loading or unloading load-transporting type vehicle and...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S470000, C414S397000, C180S014200, C180S014100, C298S0230MD, C298S00800T, C298S018000, C280S478100

Reexamination Certificate

active

06361269

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention is directed to vehicles for transporting a payload and, more particularly, to a multicombination vehicle for transporting a payload, such as a mined ore, over the roadways in an underground mine. The multicombination vehicle includes at least one powered, load-carrying towing unit and at least one load-carrying towed unit. The multicombination vehicle is configured to minimize the swept path width of the vehicle to permit operation within the relatively narrow tunnels and included relatively low radius turns typically found in underground mines.
2. Related Art
Mined payloads, such as various metal ores, are typically transported through the tunnels of an underground mine by either a railway train including a locomotive and one or more cars operating on a fixed system of railway tracks, or rigid body, load-carrying trucks. Although each known system may be advantageously utilized in certain applications, they are both subject to various disadvantages.
An underground railway system is relatively expensive to install and operate due to the cost of acquiring the locomotive and installing the fixed railway system and the associated maintenance costs. Furthermore, and perhaps more importantly, an underground railway system is route-specific and therefore not flexible to changes in route without incurring the expense of installing additional railway tracks. Underground mines typically have several mining areas, which may occur on multiple levels within the mine. The mined product, such as ore, is typically transported from each mining area to a common receiving area, and then through one or more vertical chutes connecting different levels of the mine if required, to a central processing area where the ore is processed, or sufficiently crushed. The ore is then typically removed from the mine through a single vertical shaft extending to the surface. A single ore crusher and associated shaft is typically used due to the prohibitive costs associated with drilling a shaft from the surface to the mining area deep below the ground. As each new mining area opens, it is necessary to incur the cost of installing new track for the railway system, or to use supplemental vehicles to haul the ore from the mining area to the end of the railway track system.
Rigid body load-carrying trucks, such as wheeled dump trucks, are not route-specific since they are capable of traveling over various roadways within the mine between various origination and destination points. However, known trucks of this type are typically designed for hauling loads over relatively short distances and rough terrain, such as that which may be experienced in above-ground applications. Accordingly, such trucks are typically designed with relatively large tires for relatively slow speed operation and are relatively expensive to operate and maintain due to fuel and tire costs. The efficiency of these vehicles typically decreases as the hauling distance increases. Furthermore, a single rigid body truck of this type has a significantly lower payload capacity as compared to the multicombination vehicle of the present invention.
Multicombination vehicles commonly referred to as “road trains” have been in use for some time, particularly in Australia, for the purpose of hauling mined products, or the commodities of other industries, over above-ground roadways. Known “road trains” typically include a powered load-carrying towing vehicle such as a wheeled, rigid body truck and one or more load-carrying towed vehicles. The towed vehicles may include a wheeled dolly and a semi-trailer coupled to the dolly. Both the towing and towed vehicles may include load-carrying bodies of the side-tipping type. However, conventional “road trains” are typically designed for use at relatively high speed, for instance at speeds up to 55-60 mph, and are therefore not capable of operating in an underground mine for the following reasons. Due to the relatively high speed, straight-down-the-road application of known above ground road trains, the mechanical coupling between each adjacent pair of vehicles is located as far forward as possible, or as close to the rear suspension of the upstream or forward vehicle, within the physical constraints imposed in a turning situation by the tow bar connecting the vehicles (i.e., to avoid contact between the tow bar and the chassis of the forward vehicle when turning). This location of mechanical couplings between each adjacent pair of vehicles is required to maintain the side-to-side sway, or yaw, of the last vehicle within acceptable limits for aboveground, over-the-road application, but is not compatible for operation within an underground mine due to the relatively low operating speeds as well as the relatively narrow tunnels and small radius bends experienced in underground mines. The inventor is unaware of any known above ground, road-legal multicombination vehicle of the type just described, which is capable of gaining access to an underground mine and operating within the profiles of the mine as typically exists in underground mines throughout the world.
In view of the foregoing disadvantages and limitations associated with known load-carrying vehicles, a commercial need exists for an improved load-carrying vehicle for use in underground mines.
SUMMARY
Accordingly, the present invention provides a multicombination vehicle and method for transporting a payload, such as a mined metal ore, over the roadways existing in an underground mine. The multicombination vehicle has a significantly reduced swept path width as compared to conventional aboveground road trains which permits the multicombination vehicle of the present invention to gain access to and operate within the tunnels typically found in underground mines, such as those used to mine a metal ore. The multicombination vehicle of the present invention is not route-specific and therefore, is much more flexible than the use of an underground railway system to transport a payload within the underground mine. Furthermore, the use of the multicombination vehicle of the present invention has significantly higher payload-to-tare weight and payload-to-horsepower ratios than conventional dump trucks typically used to haul ore within an underground mine. This may result in a significant cost savings to the operator of the mine.
According to one embodiment of the present invention, the multicombination vehicle comprises a powered towing unit having a chassis, a forward, wheeled axle suspended from the chassis and a rear, wheeled axle assembly suspended from the chassis by a rear suspension system. The forward, wheeled axle and rear, wheeled axle assembly support the powered towing unit for movement over the roadway. The powered towing unit further includes a source of motive power, which may comprise a diesel engine or an electric motor, for instance, and means for transmitting torque from the source of motive power to the driving axle.
The multicombination vehicle further includes a towed unit mechanically coupled to the powered towing unit. The towed unit includes a chassis and a load-carrying body mounted on and disposed above the chassis. The towed unit further includes at least one wheeled, driven axle supporting the towed unit for movement over the roadways. The towed unit may include a forward, wheeled, tandem axle assembly suspended from the chassis by a first suspension system and a rear, wheeled, tandem axle assembly suspended from the chassis by a second suspension system. The towed unit has a wheelbase which is defined as the longitudinal distance between the longitudinal centers of the first and second suspension systems. The towed unit further includes a drawbar attached to and extending from the chassis of the towed unit.
The powered towing unit further includes a draw frame attached to and extending rearwardly from the chassis of the towing unit and a coupling attached to a rear end of the draw frame and connected with the drawbar of the towed unit. The powered towing unit has a wheelbase extendin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multicombination vehicle and method for transporting a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multicombination vehicle and method for transporting a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multicombination vehicle and method for transporting a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829765

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.