Multichannel optical module

Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S089000, C385S092000

Reexamination Certificate

active

06371663

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention lies in the field of electrooptical data transmission. For the purpose of electrooptical data transmission, use is made of transmitting and/or receiving units which are generally also denoted as electrooptical modules. The modules convert electrical signals into optical signals and/or optical into electrical signals. The actual signal conversion is effected by electrooptical transducers which can, for example, be constructed as laser diodes (transmitters) or photodiodes (receivers) and in each case have transducer surfaces which are also denoted as optically active zones.
For data transmission by means of optical conductors, the modules can be equipped with mechanical coupling devices for alignment with and mechanical connection to an optical conductor connector. Those coupling devices will be referred to below as connection ports or receptacles. The term optical conductor is to be understood within the framework of the present invention to include all elements such as, for example, glass fibers or plastic fibers which are suitable for directional relaying of optical waves.
The SIEMENS House Journal [Siemens-Firmenzeitschrift]“FDDI Low-Cost Transceiver” (Ref. No. A 23001-G40-P 024-X-7600), 1993 discloses an electrooptical module which has a separate receiving channel and a separate transmitting channel. The known module is equipped for each channel with a separate, individual connection port. Each connection port has in each case a centering sleeve for holding an optical conductor connector pin, and latching arms as locking elements which cooperate with corresponding undercuts on the connector housing. Mechanical fixing of the inserted connector in the respective port is thereby ensured. The connector pins are constructed as standardized pins (ferrules) and in each case hold in a central longitudinal bore a single optical conductor which terminates at the connector pin end face. The centered optical conductor guidance does not require rotary alignment or fixing of the connector pin.
As regards their geometries and their dimensions relevant to the respective connector, the holding sleeve and the mechanical lock are configured in accordance with the Japanese Industry Standard JIS-C-5973-1990. Inter alia, this standard stipulates the length and the diameter of the connector pin, the connector housing dimensions and the position and shape of the shaped elements which cooperate with the mechanical lock of the connection port. Such a standard connector is denoted in general as an SC connector. A connection port constructed for coupling to such an SC connector is therefore denoted as an SC connection port or SC receptacle.
As the prior art transceiver also shows, in the case of such configurations there is thus provided for each transmission channel a separate SC connection port with the aid of which in each case a single electrooptical transducer transmits over a waveguide into the optical conductor end face (transmitter) and receives radiation emitted from the end face (receiver).
As the data volumes to be transmitted increase, there is a greater need for parallel data transmission between two locations, or at least for the possibility of receiving and transmitting in parallel at a location. In principle, the use of an appropriate plurality of single-channel modules is appropriate for satisfying this need, and this has also become accepted in many applications.
A further possibility is to develop special forms of plugs. In a prior art multichannel optical module, a plurality of electrooptical transducers are assigned to a connection port. The connection port serves to hold and lock a plug which contains a plurality of optical conductors. Via waveguides, the transducers are aligned next to one another with a coupling plane running perpendicular to the plugging direction. The connection port has a holder for the plug and locking elements cooperating mechanically with the plug. For the purpose of mutual alignment of the connection port and plug—in which the optical conductors run along a longitudinal plane—the holder is simultaneously constructed as an alignment aid which cooperates with a corresponding configuration of the plug in such a way that in each case a transducer can be individually coupled to an end of one of the optical conductors in the region of the coupling plane. In this case, the mutual alignment of the connection port and plug is performed via self-closure of the plug in the holder. In order for it to be possible to insert the plug into the holder of the connection port and at the same time to keep nevertheless to low coupling losses, it is necessary to observe very small maximum deviations (tolerances) from the nominal dimensions during manufacture. Upon making contact with the light entry and/or light exit surfaces of the waveguides, the plug cannot fall back axially. In the case of frequent plugging cycles, in particular, the end faces of the optical conductor ends are therefore subjected to an increased risk of damage (see published European patent application EP 0 618 468 A1).
However, with regard to the space requirement which rises correspondingly with a rising number of modules, it is also desirable to be able to offer other solutions. In this case, it ought to be possible in the interest of the user to continue to handle the modules, for example during the processes of packing, testing and mounting, with similar and, preferably with the same devices.
SUMMARY OF THE INVENTION
The object of the invention is to provide a multichannel optical module which overcomes the above-noted deficiencies and disadvantages of the prior art devices and methods of this kind, and which, in conjunction with a substantially reduced space requirement or substantially increased module functionality
umber of channels can continue to be handled in the accustomed way and can easily be coupled, as before, to the optical conductors to be connected.
With the above and other objects in view there is provided, in accordance with the invention, a multichannel optical module for receiving a connector of the type having a connector housing with shaped elements and a substantially cylindrical connector pin in the housing with a plurality of optical conductors arranged in a central longitudinal plane, the module comprising:
a housing formed with a connection port for receiving a connector along a plug-in direction and locking the connector therein;
a plurality of electrooptical transducers assigned to the connection port, the transducers being optically aligned via waveguides next to one another with a coupling plane oriented perpendicular to the plug-in direction;
the connection port having a cylindrical holding sleeve for a connector pin of the connector, and locking elements cooperating mechanically with shaped elements of the connector housing;
alignment aids formed on the holding sleeve for mutually aligning the connection port and the connector pin of the connector, the alignment aids cooperating with corresponding alignments aids on the connector pin such that in the region of the coupling plane are respective the transducer is coupled individually to an end of a respective one of the optical conductors;
the waveguides extending in a common coupling member and spreading open toward the transducers.
In accordance with an added feature of the invention, the alignments aids are longitudinal webs or ribs constructed on the inside of the holding sleeve.
In accordance with an additional feature of the invention, the holding sleeve has a defined longitudinal axis and the alignment aids are centering pins arranged on both sides of the longitudinal axis of the holding sleeve.
In other words, the solution essentially provides to configure the connection port in a way known per se such that a connector pin which contains a plurality of optical conductors can be held and, in so doing, to ensure in a novel way the centering between the plug and connection port by means of a cylindrical configuration previously customary onl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multichannel optical module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multichannel optical module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multichannel optical module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2927486

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.