Multichannel communication protocol configured to extend the...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S635000, C607S002000, C607S016000

Reexamination Certificate

active

06472991

ABSTRACT:

FIELD OF THE INVENTION
The present invention is generally directed to implantable medical devices and in particular battery-powered implantable medical devices and systems for communicating with such devices.
BACKGROUND OF THE INVENTION
The present invention relates to systems for monitoring and/or affecting parameters of a patient's body for the purpose of medical diagnosis and/or treatment. More particularly, systems in accordance with the invention are characterized by a plurality of devices, preferably battery powered, configured for implanting within a patient's body, each device being configured to sense a body parameter, e.g., temperature, O
2
content, physical position, electrical potential, etc., and/or to affect a parameter, e.g., via nerve and/or muscle stimulation.
Commonly owned U.S. Pat. No. 6,164,284 entitled “System of Implantable Devices For Monitoring and/or Affecting Body Parameters” and U.S. Pat. No. 6,185,452 entitled “Battery Powered Patient Implantable Device”, incorporated herein by reference in their entirety, describe devices configured for implantation within a patient's body, i.e., beneath a patient's skin, for performing various functions including: (1) stimulation of body tissue and/or sensing of body parameters, and (2) communicating between implanted devices and devices external to a patient's body. Depending upon the ailment affecting the patient, it may be desirable to communicate with a number of different devices, e.g., from one to thousands, while maintaining an update rate, e.g., on the order of every 1 millisecond to every second, sufficient to control and/or monitor the body parameter(s) at issue. Such implantable devices are preferably powered using rechargeable batteries. Depending on the power requirements of these devices and the available capacity of their rechargeable batteries, the time between rechargings is potentially limited. Accordingly, power conservation techniques to extend the battery life of such devices are desirable. The present invention is directed to a multichannel communication system and protocol that facilitate such power conservation while maintaining the required update rate.
SUMMARY OF THE INVENTION
The present invention is directed to a communication system and protocol that is configured to extend the battery life of battery-powered devices that monitor and/or affect parameters of a patient's body and is particularly useful in a system comprised of a system control unit (SCU) and one or more devices implanted in the patient's body, i.e., within the envelope defined by the patient's skin. Each such implanted device is configured to be monitored and/or controlled by the SCU via a wireless communication channel.
In accordance with the invention, the SCU comprises a programmable unit capable of (1) transmitting commands to at least some of a plurality of implanted devices and (2) receiving data signals from at least some of those implanted devices. In accordance with a preferred embodiment, the system operates in closed loop fashion whereby the commands transmitted by the SCU are dependent, in part, on the content of the data signals received by the SCU.
In accordance with an exemplary embodiment, each implanted device is configured similarly to the devices described in the commonly owned U.S. Pat. No. 6,164,284 and typically comprises a sealed housing suitable for injection into the patient's body. Each housing preferably contains a power source having a capacity of at least 1 microwatt-hour and power consuming circuitry preferably including a data signal transmitter and receiver and sensor/stimulator circuitry for driving an input/output transducer. Wireless communication between the SCU and the other implanted devices can be implemented in various ways, e.g., via a modulated sound signal, an AC magnetic field, an RF signal, a propagated electromagnetic wave, a light signal, or electrical conduction.
Preferably such implantable devices are powered by an internal rechargeable battery. The amount of time between rechargings of the battery is determined by the battery capacity and the power consumption of the device. The present invention reduces the average power consumption of the implantable devices by reducing the usage duty cycle of the power consuming transmit and receive modes used by the implantable devices to communicate with the SCU while maintaining a sufficient update rate to control and/or monitor the required body parameter(s). By dedicating addressable time slots to each of the implantable devices in the system and limiting their use of receive and transmit modes to time periods proximate to these time slots, the average power consumption is accordingly reduced.
In accordance with the present invention, a preferred method is described for communicating between a system controller and a plurality of addressable, battery-powered, implantable stimulation/sensor devices that is configured to extend the battery life of the implantable devices by reducing their average power consumption. In the preferred method, the system controller periodically, during a system control data time period, sends a system control data message which defines addressable data that is to be directed to each of the plurality of implantable devices, wherein the implantable devices consume a base amount of power and additionally consume a first incremental amount of power when operating in a receive mode to receive data from the system controller during a selected portion of the system control data time period, the selected portion of the system control data time period being a portion, i.e., less than 75%, of the system control data time period and the average power consumption of the implantable devices is reduced accordingly. The system controller then waits a response time period following each system control data message for enabling each of the implantable devices to provide data to the system controller in a selected portion of the response time period related to the address of each implantable device, wherein the implantable devices additionally consume a second incremental amount of power when operating in the transmit mode, the selected portion of the response time period being a portion, i.e., less than 75%, of the response time period and the average power consumption of the implantable devices is reduced accordingly.
In accordance with a further aspect of the invention, the implantable devices are configurable to switch between a first mode of operation where the selected portion of the response time period is used for responses from a single implantable device and a second mode of operation where the selected portion of the response time period is alternately shared for sending responses to the system controller from a plurality of implantable devices, thereby extending the battery life of the implantable devices that share the selected time response period portions.
In a still further aspect of the present invention at least one selected implantable device is configurable via data within the system control data message to occupy a plurality of the selected portions of the response time period to thereby increase the effective communication rate from the selected implantable device to the system controller.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a simplified block diagram of an exemplary system suitable for practicing the communication protocol of the present invention, the system being comprised of implanted devices, e.g., microstimulators, microsensors and microtransponders, under control of an implanted system control unit (SCU).
FIG. 2
comprises a block diagram of the system of
FIG. 1
showing the functional elements that form the system control unit and implanted microstimulators, microsensors and microtransponders.
FIG. 3A
comprises a block

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multichannel communication protocol configured to extend the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multichannel communication protocol configured to extend the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multichannel communication protocol configured to extend the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925218

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.