Heat exchange – With thermal or acoustical blocker
Reexamination Certificate
2002-01-07
2004-11-02
Bennett, Henry (Department: 3743)
Heat exchange
With thermal or acoustical blocker
C165S144000, C165S150000, C165S173000, C165S175000, C165S178000
Reexamination Certificate
active
06810949
ABSTRACT:
The invention relates to a multi-block heat exchanger with a first heat exchanger unit and at least one second heat exchanger unit attached to the first heat exchanger unit. The first heat exchanger unit includes a first heat exchanger block of pipes having at least one first lateral collecting chamber. The second heat exchanger unit includes a second heat exchanger block of pipes having at least one second lateral collecting chamber. In a heat exchanger of this type, the two or more heat exchanger units are integrated into a common constructional unit. The individual heat exchanger units each contain a block of heat exchanger pipes and can have different heat exchanger media flowing through them in order to bring said media into thermal contact, for example, with an air flow guided away over the blocks of pipes on the outside of the pipes. A multi-block heat exchanger of this type is suitable, for example, as a combined oil cooler and condenser/gas cooler in motor vehicles. With the oil-cooler heat exchanger unit, operating oil, for example of a motor vehicle transmission, which is circulating in an oil circuit can be cooled, while in the condenser or gas-cooler heat exchanger unit a high-pressure refrigerant of a motor vehicle air conditioning system can be condensed or cooled.
It is known, for example from laid-open specifications EP 0 367 078 A1 and EP 0 431 917 A1, to integrate two heat exchanger units having a respective block of flat pipes in a common constructional unit by the two blocks of flat pipes together with the associated, lateral collecting pipes being arranged lying one behind the other in the downward direction of the blocks and being connected to each other by a common, heat-conducting corrugated rib structure.
In the case of a multi-block heat exchanger disclosed in laid-open specification DE 33 44 220 A1, there is accommodated in a lateral cutout of a first block of pipes of a first heat exchanger unit, between lateral connecting tanks thereof, a second block of pipes together with lateral connecting tanks of a further heat exchanger unit, the second block of pipes being welded onto an adjacent closing wall of the first block of pipes.
Laid-open specification DE 195 36 116 A1 describes a heat exchanger, in which a block of pipes/ribs together with two lateral collecting pipes is divided into two regions for different heat exchanger media by the two collecting pipes being subdivided at corresponding points by a transverse partition arrangement into two separate collecting chambers in each case which are assigned dedicated connection structures. At the height of this separating region, instead of the flat pipes which are otherwise provided, a separating web is fitted into the block of pipes/ribs.
The technical problem on which the invention is based is the provision of a multi-block heat exchanger of the type mentioned at the beginning, in which, with relatively little outlay, at least one further heat exchanger unit of flexible construction is attached to a first heat exchanger unit in a largely isolated manner thermally.
According to an embodiment of the present invention, the invention solves this problem by the provision of a multi-block heat exchanger having a first heat exchanger unit and at least one second heat exchanger unit attached to the first heat exchanger unit. The first heat exchanger unit includes a first heat exchanger block of pipes having at least one first lateral collecting chamber. The second heat exchanger unit includes a second heat exchanger block of pipes having at least one second lateral collecting chamber. The first and second collecting chambers are formed by a dedicated collecting pipe in each case. The two collecting pipes are fitted one into the other on end sides of the collecting pipes and are connected in a fluid tight manner. An outer cross section of one collecting pipe in the pipe-connecting region essentially corresponds to an inner cross section of the other collecting pipe. A transverse partition is provided to separate the two collecting chambers. Thus, in the case of this heat exchanger, the blocks of pipes of the different heat exchanger units are provided with dedicated collecting pipes in each case, which makes possible, in particular, the use of collecting pipes having cross sections differing in size for the individual blocks of pipes. Every two heat exchanger units are connected to each other at least via a collecting-pipe connection on the end side by the two collecting pipes which are involved being fitted one into the other on their end sides and being connected in a fluid-tight manner. For this purpose, the collecting pipes are designed in this end-side region in such a manner that the outer cross section of the inserted collecting pipe essentially corresponds to the inner cross section of the collecting pipe fitting around it. A transverse partition provided in the pipe-connecting region keeps the collecting chambers belonging to the two collecting pipes separate from each other. This type of integration of two or more heat exchanger units into a common constructional unit has the advantage of enabling different heat exchanger units to be assembled in a flexible manner to form a multi-block heat exchanger, i.e. various different heat exchanger units can optionally be attached to a given, first heat exchanger unit.
According to another embodiment of the present invention, a multi-block heat exchanger is provided. This embodiment is similar to the first embodiment except that the outer collecting pipe in the pipe-connecting region tapers from a larger central-region cross section to a smaller connecting-region cross section. Additionally, the outer collecting pipe is manufactured by a drawing-in, hammering or expansion process or as an extruded part. Thus, the two collecting pipes of two assembled heat exchanger units have cross sections which differ in size in their central region into which the pipes of the associated block of pipes lead in each case. In order to realize the collecting-pipe connection, the collecting pipe having the larger central-region cross section is tapered in the corresponding end-side connecting region to a smaller cross section which is then just sufficient in order to accommodate the collecting pipe having the smaller cross section. The collecting pipe which is tapered on the end side is manufactured with relatively little outlay by a drawing-in, hammering or expansion process or as an extruded part.
According to another embodiment of the present invention, a multi-block heat exchanger is provided. This embodiment is similar to the first embodiment except that in the pipe-connecting region the outer collecting pipe is solder-plated on its inside or the inner collecting pipe is solder-plated on its outside. Thus, in the pipe-connecting region of the two collecting pipes fitted together the outer collecting pipe is solder-plated on its inside and/or the inner collecting pipe is solder-plated on its outside. This measure enables the two collecting pipes to be connected in a soldering procedure in which the leakproof soldering of the heat exchanger pipes to the collecting pipes and the soldering of heat-conducting ribs, if provided, to the heat exchanger pipes preferably take place at the same time.
According to another embodiment of the present invention, a heat exchanger is provided. This embodiment is similar to the first embodiment except that the two blocks of pipes are arranged lying next to each other in a vertical direction of the blocks. Additionally, there are at least two heat-conducting ribs and/or an air gap and/or a thermally insulating block-closing wall between the heat exchanger pipe of the one block of pipes and the heat exchanger pipe of the other block of pipes that are closest together. Thus, the heat exchanger contains at least two blocks of pipes which are arranged lying next to each other in the vertical direction of the blocks. There are at least two heat-conducting ribs and/or an air gap and/or a thermally insulated block-closing wall between those pipes
Dienhart Bernd
Krauss Hans-Joachim
Mittelstrass Hagen
Schumm Jochen
Staffa Karl-Heinz
BEHR GmbH & Co.
Bennett Henry
Foley & Lardner LLP
Patel Nihir
LandOfFree
Multiblock heat-transfer system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiblock heat-transfer system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiblock heat-transfer system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3317163