Rotary kinetic fluid motors or pumps – With means for controlling casing or flow guiding means in...
Patent
1996-12-17
1999-03-02
Kwon, John T.
Rotary kinetic fluid motors or pumps
With means for controlling casing or flow guiding means in...
416111, F03D 700
Patent
active
058761810
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
The present invention converts natural wind energy into electrical energy by increasing the speed of input rpm in a highly efficient integrated bevel-planet gear box, and through the multi-unit rotor blade system using a propeller-type wind mill generator.
BACKGROUND ART
Wind is one of the oldest forms of energy used by man. With enormous increases in demand for environmentally friendly sources of energy, plus a growing fossil-fuel shortage, development of alternative energy sources has been stimulated. In this same environment, wind conversion systems are becoming more efficient and competitive, generating amounts of electrical energy large enough for commercial use. However, in order to meet global clean energy needs, it will be necessary to adopt a new approach to wind-generated electrical energy production.
There are two major challenges to a developer of a wind energy conversion system: overall energy conversion efficiency and fluctuations in wind speed and direction. The lower potential power output of wind energy dictates that an advanced conversion system must be of considerable size if substantial amounts of electrical power are to be generated.
Taking the above matter into account, the present invention provides a more efficient and improved system which is based on the Prior Art system patented in Korea under No. 057585 and in the U.S. Pat. No. 5,222,924.
After experimental field testing, it became apparent that the counter-rotation of the main and auxiliary rotor blades of the Prior Art in the wind turbine system (FIG. 15) had need of improvement. For example, the main rotor blade of the Prior Art is disposed in the front of the tower in an up-wind position, while the auxiliary rotor blade is mounted in a down-wind position functioning as a tail in order that the wind turbine may face into the wind as the direction varies. However, the up-wind position of the main rotor blade created radius limitations due to the narrow space between the tip of the blade and the tower. When the wind blew, the rotor blade was bent toward the tower, finally touching it, with longer blades bending more easily. Rotational tip speed, then, was limited with respect to the constraints imposed on the length of the blade's radius.
A second structural configuration deficiency was the bevel and planet gear box. In the Prior Art, the sections are separated into an upper bevel gear member and a lower planetary gear member.
The design required a complicated lubrication system as well as extraneous components which curbed operational and mechanical efficiency.
DISCLOSURE OF INVENTION
The present invention is distinguished from the Prior Art in that it is comprised of an improved wind turbine having one auxiliary up-wind rotor blade in a counter-rotational relationship to a main down-wind rotor blade attached to an extender. The up-wind auxiliary rotor blade is positioned in front of the combined bevel and planet gear box, and the down-wind main rotor blade is mounted in the rear, respectively.
The radius of auxiliary rotor blade is one-half the length of the extender and the main rotor blade radius combined. The two rotational speeds of the main and auxiliary blades have a coincidental tip speed ratio (.lambda.=V.sub.1 /Vo, Vo:Wind speed m/s, Vi:tip speed of rotor blades m/s) which reaches an optimum tip speed ratio independent of wind speed variance. One of the special features of the combined bevel-planet gear device is that the two discrete horizontal input rotational forces of the auxiliary and main rotor turbines are converted into a single higher rotational force which is imparted to the perpendicularly positioned generator located immediately beneath the gear box.
Accordingly, the first objective of the present invention was to provide an improved, highly rigid, compact, combined bevel-planet gear assembly which could convert two rotational forces into one to generated electrical energy throughout the period of operation of a wind turbine disposed on the top of a tower, and to provide a generator
REFERENCES:
patent: 2183195 (1939-12-01), Kane
patent: 2563279 (1951-08-01), Rushing
patent: 3762669 (1973-10-01), Curci
patent: 4213057 (1980-07-01), Are
patent: 4311435 (1982-01-01), Bergero
patent: 5506453 (1996-04-01), McCombs
LandOfFree
Multi-unit rotor blade system integrated wind turbine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-unit rotor blade system integrated wind turbine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-unit rotor blade system integrated wind turbine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-416231