Multi-structure holographic notch filter and a method of...

Optical: systems and elements – Holographic system or element – Using a hologram as an optical element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S001000, C430S001000

Reexamination Certificate

active

06661547

ABSTRACT:

RELATED APPLICATIONS
This application claims the priority of Japanese Patent Application No. 2001-132313 filed on Apr. 27, 2001, which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a multi-structure holographic notch filter and a method of manufacturing the same and particularly to improvement of the transmissivity and the narrow-band rejection capability.
2. Description of the Related Art
Monochromatic light of a short wavelength such as laser beam is directed to an object. Its scattered lights converge on a diffraction grating through a lens and separate into spectra. The scattered lights include spectral components different in the wavelength to the incident light as well as components identical in the wavelength. The scattered light having the same wavelength as of the incident light is called Rayleigh scattered light while the scattered light having a different wavelength is called Raman scattered light.
The Raman scattered light has a combination of the frequency of the incident light and the proper frequency of the object. Also, the intensity of the Raman scattered light is proportional to the intensity of the incident light and the density of the object. Accordingly, ingredients of the object can be identified and quantitatively determined by spectro analysis of the Raman scattered light.
However, the intensity of the Raman scattered light is generally 10
−6
to 10
−12
times as weak as the intensity of the Rayleigh scattered light. It is hence necessary to precisely isolate only the Raman scattered light to the exclusion of Rayleigh scattered light from the scattered light for high-accuracy measurement of the Raman scattered light.
When a Raman shift of the Raman scattered light is very small, a difference in wavelength between the Raman scattered light and the Rayleigh scattered light is also so small that the detection of the extremely weak Raman scattered light with the Rayleigh scattered light is very difficult. Thus, a filter to preferably remove only the Rayleigh scattered light, which is a light component having a specific wavelength, is necessary. For this purpose, a holographic notch filter is generally used. The notch filter is designed for rejecting a predetermined range of wavelengths of the incident light as different from any typical filter for passing a desired range of wavelengths.
A usual method of manufacturing the holographic notch filter is now explained. The holographic notch filter has a photographic plate
110
arranged to receive two laser beams, an object wave L
1
and a reference wave L
2
, from opposite directions, as shown in FIG.
4
.
In this case, as shown in
FIG. 5
, the two light waves L
1
and L
2
for hologram create a pattern of interference
112
developed substantially parallel with a recording layer
116
provided on a support
114
. Assuming that the refractive index of the recording layer
116
is n, the pattern of interference is pitched at ½n the wavelength of the laser beam.
Through periodic exposure and development processes, the refractive index can be modified to have tens or more periodic levels as shown in FIG.
6
.
The refractive index n(x) at the location x in the recording layer
116
is expressed by
n
(
x
)=
n
A
+(½)
n
P
sin(2
&pgr;x/P
),  (1)
where n
A
being the average refractive index (=(n
H
+n
L
)/2), n
P
being a modulation range of the refractive index (=(n
H
−n
L
)), P being a period, n
H
being the maximum refractive index, and n
L
being the minimum refractive index.
It is desired for the holographic notch filter to reject only the wavelengths of the Rayleigh scattered light. If the band width of the filter for rejecting the wavelength of the incident light is wide, some of the Raman scattered light shifted close to the wavelengths of the Rayleigh scattered light may be removed as well.
It is significantly essential for the holographic notch filter to minimize the band width BW at a wavelength &lgr; of the Rayleigh scattered light to be rejected as shown in FIG.
7
. Also, the light absorbance at the wavelength &lgr; has to be high.
The optical density of the holographic notch filter is calculated from
Optical Density(O.D.)=log(100
/T
)=(
1.36×BW×
N
)−log(4


S
),   (2)
where T being the minimum transmissivity, N being the number of periodic levels shown in
FIG. 6
, and n
S
being the refractive index of the substrate.
The band width BW is calculated from
Band width(BW)=(
n
P
)/(2
n
A
).  (3)
As apparent from the equation (2), the optical density is proportional to the modulation range of the refractive index saved on the photographic plate and the number of periodic levels shown in FIG.
6
. It is also apparent from the equation (3) that the band width is proportional to the modulation range of the refractive index.
It is hence understood that the modulation range of the filter has to be increased to have a higher rate of the optical density.
When the modulation range of the refractive index is increased, the band width also will extend.
For increasing the optical density but minimizing the band width, the filter needs to decrease the modulation range of the filter and increase the number of periodic levels to be recorded. In other words, it is recommended to use a thick recording layer.
In case that the recording layer is too thick, its photosensitive action initiates absorption of light during recording of the modulation of the refractive index into the recording layer by two-beam interference, thus disallowing any uniform exposure action.
Also, in the development process, the thick recording layer may hardly generate a uniform development, resulting in variations in the modification of the refractive index.
As a result, the modulation of the refractive index is not uniform at different locations in the thick recording layer, as shown in FIG.
8
. It is hence very difficult to manufacture a high OD filter which is improved in the light transmissivity and in the filtering at a narrow range of wavelengths.
It is strongly required that the holographic notch filter should reject a narrow, desired band of the incident light. However, its conventional method to manufacture a filter with a narrow band width by increasing the recording layer thickness certainly encounters a technical difficulty. For compensation, an improved method has been demanded, but no appropriate technologies can overcome the difficulty so far.
An alternative filter manufacturing method is provided through not photosensitive development but through vapor deposition of the diffraction gating. The vapor deposition is however unsuccessful to implement an OD level of 6 or higher which is essential for the holographic notch filter.
SUMMARY OF THE INVENTION
Its one object is to provide a holographic notch filter which can favorably reject and remove a narrow, desired range of wavelengths of the incident light. And another is to provide a method of easily manufacturing the holographic notch filter.
For achievement of the above objects, a multi-structure holographic notch filter having a holographic recording material arranged on which modulations of the refractive index are recorded by two-beam interference is provided as characterized in that: a thin-film filter element is manufactured from a thin form of the holographic recording material in which modulations of the refractive index are recorded by the two-beam interference; and a plurality of the thin-film filter elements are joined together to develop a layer arrangement.
The multi-structure holographic notch filter of the present invention is preferably modified in which the thin-film holographic element comprises: glass substrates; thin holographic recording materials provided on their corresponding glass substrates and having the modulations of the refractive index recorded therein; and a refractive index adjusting agent which is substantially identical in the refractive index t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-structure holographic notch filter and a method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-structure holographic notch filter and a method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-structure holographic notch filter and a method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.