Multi-step fiber stripping

Drying and gas or vapor contact with solids – Process – Gas or vapor contact with treated material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C034S444000, C034S380000, C034S060000

Reexamination Certificate

active

06799383

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to stripping optical fibers, and in particular to a method and apparatus for rapidly and efficiently stripping optical fibers having multiple coatings.
BACKGROUND
Fiber optic cables are widely used in modern optical devices and optical communications systems. Optical fibers are usually coated with one or more a protective layers, for example a polymer coatings, in order to protect the surface of the fiber from chemical or mechanical damage. It is necessary to remove the protective coating or coatings in order to prepare the fibers to be cleaved and spliced, or in order to further process the fibers to manufacture optical devices such as optical sensors and other optical communications network components.
When extra protection is required, a fiber with an additional layer of coating is used. This additional layer is typically made up of a polymeric substance, such as, for example, nylon, PVC, Kevlar or Hytrel. In some typical fibers, this additional layer extends the outer diameter out to about 900 microns from the typical 250 microns. This additional layer is sometimes bonded to the acrylate 250 micron layer, disposed between the fiber and the additional layer. It is necessary to remove all of the protective coatings in order to prepare the fibers to be cleaved and spliced, or in order to further process the fibers to manufacture optical devices such as optical sensors and other optical communications network components.
Conventional stripping methods include mechanical stripping, chemical stripping, and thermal stripping. These methods all suffer from a number of defects. Mechanical stripping typically involves a stripping tool, similar to a wire stripper, which cuts through the coating and scrapes it off. A major disadvantage is that mechanical stripping typically nicks or scratches the glass fiber surface, eventually leading to cracks and to degradation in the tensile strength of the fiber. By way of example, the tensile strength of an optical fiber may be reduced from about 15-16 pounds before mechanical stripping to about 3-5 pounds after mechanical stripping. The optical fiber's longevity is thereby reduced.
Chemical stripping uses solvents or concentrated acids to remove the polymer coating. In the prior art, acid stripping is often performed using a sulfuric nitric mixture that includes about 95% sulfuric acid and about 5% nitric acid. While this prior art method reduces tensile strength degradation, an acid residue may typically be left on the fiber surface at the splice point. Therefore, using chemical stripping on titanium dioxide color coded fiber degrades the splice strength. Also, chemical stripping as performed in the prior art is very costly.
Finally, there are major safety concerns inherent in chemical stripping methods. Ventilation and safety equipment may be needed when using acids for the stripping process. Human operators performing acid stripping require facilities having well-ventilated areas, preferably with exhaust or ventilation hoods for removing acid fumes. They may also require protective gear, such as protective clothing and gloves for avoiding acid burns, and protective breathing apparatus for protection from acid fumes in the air. Storing, handling, and transporting the acids are also extremely hazardous.
This process cannot be effectively used on the 900 micron layer of a fiber due to it's make up. If one were to attempt to use acid to remove the 900 layer as well as the 250 layer the acid would wick up between the 900 layer and the 250 layer in the area adjacent to the area of desired stripping creating a longevity problem. This approach would also cause severe contamination of the acid medium reducing its usability and potentially causing recontamination of the fiber.
SUMMARY OF THE INVENTION
The present invention provides a system and method for heat stripping an optical fiber (e.g., titanium dioxide color coded fiber). A short, heated burst of air is injected from a forced air heat source, and applied to one or more portions of the optical fiber. A short burst of air lasts less than about one second, and has a temperature of about 700-1100 degrees C. This is useful in quickly stripping a portion of the fiber cable (or spot stripping). The stripper may be a translatable stripper, whereby the stripper or portions thereof, the fiber(s), or some combination thereof, are translatable. In such a case, prolonged or multi-burst techniques may be used to strip one or more extended lengths of one or more fiber optic cables. In either case, due to the high temperature, the outer coating of the optical fiber is immediately removed, without degrading the original tensile strength of the fiber. No coating residue remains on the fiber, and no curling of the coating occurs. While heated air is used in a preferred embodiment of the invention, other embodiments may use other substances, such as other gases and fluids.
A system for stripping an optical fiber in accordance with the present invention includes an air source and means for generating short bursts or streams of air from the air source, by releasing compressed air during short periods of time. Typically, each short burst of air lasts less than one second. However, for stripping extended lengths of fiber the burst of air may have a longer duration, e.g., 4-5 seconds.
In one embodiment of the invention, the means for generating bursts of air includes an air pressure generator for creating air pressure, an air pressure controller for controlling air pressure, and an air flow regulator for regulating the flow of air out of the means for generating bursts of air, so as to controllably release compressed air from the means for generating bursts of air during very short time intervals. In one form of the invention, the air flow regulator may be a solenoid valve controlled by a timer.
The optical fiber stripping system further includes a heater for heating the bursts of air to a temperature sufficient to remove the outer coating from the optical fiber with a single burst. Typically, the requisite temperature is from about 700 degrees Celsius to about 1100 degrees Celsius. The heater heats the air bursts without bringing the air into contact with the heat source of the heater. In this way, the air avoids exposure to unwanted contaminating particles from the heat source, such as carbon or oxidized particles. The unwanted particles are thus prevented from being deposited on the fiber, and from reducing the tensile strength or performance characteristics of the fiber. The heater can be used to efficiently heat substances other than air, such as other gases and fluids.
The heater includes a heater core having a heat generating element. The heater core supplies heat to a heat chamber. An air conduit receives air from the means for generating bursts of air and is preferably configured to also receive heat from the heater core, thereby preheating the air. Along with a heat chamber outlet port, the air conduit and heat chamber form an isolated air transport path. When air is injected from the means for generating bursts of air into the air conduit, heat generated by the heat generating element in the heater core is transferred to the air while the burst of air flows through the conduit and through the heat chamber. In this way, the air stream is heated to a temperature sufficient to strip an optical fiber, while remaining isolated from the heat generating element in the heater core. An air output nozzle connected to the outlet port of the heat chamber directs the heated burst of air at the portion of the optical fiber to be stripped. The outer coating of the fiber is vaporized and removed almost instantly. In other forms, preheating in an air conduit may not be provided.
In various embodiments, the stripper or portions thereof are translatable with respect to the fiber. In other embodiments, the fiber may be translatable with respect to the stripper, or portions thereof. In such translatable strippers, multiple bursts of air may be used to strip an e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-step fiber stripping does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-step fiber stripping, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-step fiber stripping will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.