Multi-stage compression spring

Spring devices – Rubber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C267S152000

Reexamination Certificate

active

06220585

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to compression springs and more particularly pertains to a new multi-stage compression spring for providing a biasing element having at least two portions having different compression resistances from one another.
2. Description of the Prior Art
The use of compression springs is known in the prior art. More specifically, compression springs heretofore devised and utilized are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
Known prior art includes U.S. Pat. No. 4,560,150; U.S. Pat. No. 5,588,665; U.S. Pat. No. 3,713,665; U.S. Pat. No. 4,029,305; U.S. Pat. No. 4,650,166; U.S. Pat. No. 2,933,308; U.S. Pat. No. 4,783,096; U.S. Pat. No. 3,160,407; U.S. Pat. No. 4,807,858; U.S. Pat. No. 2,926,011; U.S. Pat. No. 4,493,481; U.S. Pat. No. 3,263,985; U.S. Pat. No. 5,791,637; U.S. Pat. No. 2,711,315; and U.S. Pat. No. 4,242,961.
SUMMARY OF THE INVENTION
In view of the foregoing disadvantages inherent in the known types of compression springs now present in the prior art, the present invention provides a new multi-stage compression spring construction wherein the same can be utilized for providing a biasing element having at least two portions having different compression resistances from one another.
The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new multi-stage compression spring apparatus and method which has many of the advantages of the compression springs mentioned heretofore and many novel features that result in a new multi-stage compression spring which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art compression springs, either alone or in any combination thereof.
To attain this, the present invention generally comprises a resiliently compressible element comprising a resiliently deformable elastomeric material and having top and bottom faces and a side surface. The side surface of the resiliently compressible element has an annular channel therearound which divides the resiliently compressible element into top and bottom portions. The resiliently compressible element has a bore therethrough extending between the top and bottom faces. The bore has generally cylindrical top and bottom regions and top and bottom chambers interposed between the top and bottom regions of the bore. The top and bottom chambers of the bore each have generally frusto-conical upper and lower sections. The upper and lower sections of the top chamber form an annular upper intersection therebetween. The upper and lower sections of the bottom chamber form an annular lower intersection therebetween. The lower section of the top chamber and the upper section of the bottom chamber form an annular middle intersection therebetween. The diameter of the upper intersection is greater than the diameter of the lower intersection which is greater than the diameter of the middle intersection. The top and bottom portions of the resiliently compressible element each have a compression resistance for resisting compression against the top and bottom faces of the resiliently compressible element in directions generally parallel to the axis of the resiliently compressible element. The resistance of the top portion is less than the compression resistance of the bottom portion so that the top portion is relatively softer than the bottom portion.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
It is therefore an object of the present invention to provide a new multi-stage compression spring apparatus and method which has many of the advantages of the compression springs mentioned heretofore and many novel features that result in a new multi-stage compression spring which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art compression springs, either alone or in any combination thereof.
It is another object of the present invention to provide a new multi-stage compression spring which may be easily and efficiently manufactured and marketed.
It is a further object of the present invention to provide a new multi-stage compression spring which is of a durable and reliable construction.
An even further object of the present invention is to provide a new multi-stage compression spring which is susceptible of a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such multi-stage compression spring economically available to the buying public.
Still yet another object of the present invention is to provide a new multi-stage compression spring which provides in the apparatuses and methods of the prior art some of the advantages thereof, while simultaneously overcoming some of the disadvantages normally associated therewith.
Still another object of the present invention is to provide a new multi-stage compression spring for providing a biasing element having at least two portions having different compression resistances from one another.
Yet another object of the present invention is to provide a new multi-stage compression spring which includes a resiliently compressible element comprising a resiliently deformable elastomeric material and having top and bottom faces and a side surface. The side surface of the resiliently compressible element has an annular channel therearound which divides the resiliently compressible element into top and bottom portions. The resiliently compressible element has a bore therethrough extending between the top and bottom faces. The bore has generally cylindrical top and bottom regions and top and bottom chambers interposed between the top and bottom regions of the bore. The top and bottom chambers of the bore each have generally frusto-conical upper and lower sections. The upper and lower sections of the top chamber form an annular upper intersection therebetween.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-stage compression spring does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-stage compression spring, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-stage compression spring will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2537959

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.