Multi-service network interface for FDM communications systems

Telephonic communications – Subscriber line or transmission line interface – Network interface device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S399010, C379S413020, C379S413030

Reexamination Certificate

active

06687374

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to an interface device and method that enables a customer premises to receive services from a plurality of communications service providers, and more particularly, to an interface which permits a customer premises to receive local loop analog POTS service from multiple service providers (e.g., LEC, coax cable, wireless, DSL, etc.) by selectively connecting all or a segment of the POTS inside wiring plant to one of those services while concurrently maintaining an uninterrupted connection to a Frequency-Division-Multiplexed (FDM) service, such as a Fixed Wireless High Speed Data (HSD) service, on the same segment(s) of the same POTS inside wiring plant.
BACKGROUND
U.S. Pat. No. 5,903,643 entitled “Multi-line Station Interface” discloses a switchable interface device that enables a user to selectively connect a first of several service providers to one or more premises stations, and concurrently connect a second of the several service providers to one or more premises station locations, where the second group of one or more premises stations are necessarily different from the first group. The system disclosed in the '643 Patent does not permit a concurrent connection between a given station set (i.e., the inside wiring run) and the analog POTS service from a first service provider while allowing a connection to a FDM overlaid service (Fixed Wireless HSD, for example) from a second service provider.
U.S. Pat. No. 4,817,132 entitled “Multi-Line Access Module for Telephone Set” discloses a similar, although simpler, switching interface device to the one disclosed in the '643 Patent. A switching module is shown and described, which allows single-line telephones to be selectively switched among a multiplicity of incoming POTS CO lines from the service provider. No provision is made for coupling or switching of FDM overlaid services independent of the selected analog POTS service provider.
Several competitive, as well as complimentary voice and data communication technologies are available to subscribers for potentially concurrent distribution and usage within the customer premises. These include alternative local loop services, such as AWS Fixed wireless, voice and data over coaxial cable and various splitterless DSL services. For a variety of reasons many customers will elect to subscribe to multiple concurrent services. It is highly desirable to enable distribution of one or more of these voice and data services throughout the customer premises by utilizing the existing inside wiring plant as the common transmission medium, thus eliminating the need to install new, independent wiring and duplicate telephone stations for each of the subscribed services. Additionally, the common wiring plant may be utilized for a local area network (LAN) which may operate as an “always-connected” service. One currently available technology for distributing communications signals over the existing POTS inside wiring plant is the HomePNA 1.0 technology as specified by the Home Phoneline Networking Alliance. The HomePNA technology operates as a high-frequency, Frequency-Division-Multiplexed communication system which allows concurrent usage of the POTS service operating on the same wires. The HomePNA (or similar) technology may be utilized to distribute the signals of one of several alternative service providers throughout the premises inside wiring plant. A subscriber may have several concurrent local POTS service subscriptions (LEC line; Fixed Wireless, etc.) as well as one or more broadband data service subscriptions (splitterless DSL; Cable Modem; Fixed Wireless Data; etc.). A customer may also desire to alternate between two or more currently subscribed always-on data services, such as splitterless DSL, Cable and Fixed Wireless in a manner independent of the currently-selected POTS service provider.
It is possible for a subscriber having multiple POTS local loop service providers to utilize a Multi-line Station Interface switching device (such as disclosed in the '643 Patent) to selectively connect all or part of the premises station wiring to one of several POTS or other base band service providers. The system disclosed in the '643 Patent does not allow a HSD customer to maintain a LEC local loop line for use with a dial-up modem while maintaining an uninterrupted connection to the HSD service. The customer would be disconnected from HSD service when switching the electrical connection on the inside wiring to the LEC line.
SUMMARY OF THE INVENTION
In view of the above, it is an object of the present invention to provide a multi-service communications interface device which selectively couples the signals of one or more communications service providers, operating in one or more frequency bands higher than, and not overlapping, the conventional POTS telephone service frequency band, onto one or more station wire segments of the customer premises wiring plant in a manner not dependent on the hard-wired or switch-selectable interconnection of one or more POTS service provider connections to the same premises wiring plant station wire segments.
It is another object of the invention to provide an interface device that permits the concurrent connection to a POTS band service from a first service provider while maintaining, in an uninterrupted manner, an always-on connection to a FDM overlaid service from a second service provider with both services sharing the common inside wiring plant.
It is yet another object of the present invention to provide an interface device that permits the concurrent connection to a POTS band service from a first service provider while allowing the subscriber to selectively switch among a multiplicity of FDM overlaid services from a multiplicity of service providers with both selected services concurrently sharing the common inside wiring plant.
In accordance with the above objects and additional objects that will become apparent hereinafter, the interface device comprises one or more service access modules, each including, in part, a high-pass, or band-pass, and low-pass filter network collectively connected, on one side, to a service provider's signal connection demarcation point and, on the other side, separately connected to high-band and low-band interface switching devices. A first of the one or more service access modules is connected to a first communications service provider and the additional service access module are in respective communication with additional service providers. One or more station access modules are provided for establishing communication between the interface switching devices and one or more customer station connection points within the premises inside wiring plant, each of the station access modules optionally consisting, in part, of a high-pass (or band-pass) and low-pass filter network corresponding in pass-bands to the coupling filter network of the service access module(s) to which a service connection is desired. Two, or more, cross-point bus switching devices are provided for selectively connecting band-separated signals between any of the service access modules and any one, or group, of station access modules under the control of a control device. Thus, any premises station wire segment may be concurrently and independently connected to any one of a multiplicity of low-band (e.g., POTS) services and high-band (e.g., HomePNA; DSL) services provided to the premises by multiple service providers.
In accordance with the invention, there is also provided a method for selectively coupling the signals of a plurality of communications service providers operating in different frequency bands higher than and not overlapping the conventional POTS frequency band, onto one or more station wire segments of a customer premises wiring plant. The method comprises the steps of filtering signals received from each of the one or more communications service providers in a filter network comprising at least one of a high-pass (or band-pass) filter, and a low-pass filter; an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-service network interface for FDM communications systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-service network interface for FDM communications systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-service network interface for FDM communications systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3350356

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.