Electric lamp and discharge devices: systems – Plural load device systems
Reexamination Certificate
2001-11-01
2003-04-08
Wong, Don (Department: 2821)
Electric lamp and discharge devices: systems
Plural load device systems
C315S295000, C315S158000, C359S199200
Reexamination Certificate
active
06545434
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to lighting controllers and in particular to light dimming systems.
BACKGROUND OF THE INVENTION
Wall-mounted light switches which include a dimmer, known as dimmer switches, have become increasingly popular, especially for applications where it is desirable to precisely control the light intensity in a particular room. Such dimmer switches usually employ a variable resistor which is manipulated by hand to control the switching of a triac which in turn varies the voltage to the lamp to be dimmed.
This type of dimmer switch is simple and easy to construct, but offers limited flexibility. One feature this type of dimmer switch lacks is the ability to return to a preselected light intensity level after having been adjusted to a different light intensity. This type of dimmer switch has no memory to enable it to do this and preselected light intensity levels can be reestablished only by trial and error in manipulating the variable resistor.
There exist touch actuator controls which address some of the limitations of the manually-operated variable resistor controlled dimmer switches just described. One such touch actuator control cycles repetitively through a range of intensities from dim to bright in response to extended touch inputs. A memory function is provided such that, when the touch input is removed, the cycle will be stopped and the level of light intensity at that point in the cycle will be stored in a memory. A subsequent short touch input will turn the light off, and a further short touch input will turn the light on at the intensity level stored in the memory. While this type of switch is an improvement over manually-operated variable resistor controlled dimmer switches, it requires the user to go through the cycle of intensity levels in order to arrive at a desired intensity level. In addition, it still lacks the ability to return to a desired intensity level after having been adjusted to a different light intensity. A user must go through the cycle again until he or she finds the light intensity level desired. Moreover, this type of switch has no ability to perform certain aesthetic effects such as a gradual fade from one light intensity level to another.
U.S. Pat. No. 4,649,323 discloses a microcomputer-controlled light control which provides a fade function. The control disclosed in that patent is operated by a pair of switches which provide inputs to a microcomputer. The microcomputer is programmed to determine whether the switches are tapped or held (i.e., whether they are operated for a transitory duration or for a longer period of time). When a switch is held, the light intensity is either decreased or increased, depending on the switch operated, and release of the switch causes the intensity setting to be entered into a memory. If the control is operating at a static light intensity level, a tap of a switch will cause the light intensity level to fade toward a predetermined level, either off, full on or a preset level. A tap while the light intensity level is fading will cause the fade to be terminated and cause the light intensity level to shift immediately and abruptly to either full on or full off, depending on which switch was tapped. This type of control, however, is not without drawbacks. For example, a single tap of a switch by a user is interpreted in either of two very different ways (initiate fade or terminate fade), depending on the state of the control at the time the user applies the tap to a switch. This can be confusing to a user, who may erroneously terminate a fade when it is desired to initiate a fade, and vice versa. In addition, it is not possible to reverse a fade by a subsequent tap of the same switch while a fade is in progress. Instead, a tap while the control is fading in one direction will not reverse the direction of the fade but will cause the control to “jump” to either full on or full off. An abrupt shift from a low intensity level to full on, or from a high intensity to no light at all (full off) can be quite startling to the user and others in the area (and even dangerous, if the user and others are suddenly plunged into darkness).
Commonly assigned U.S. Pat. Nos. 4,575,660; 4,924,151; 5,191,265; 5,248,919; 5,430,356 and 5,463,286 disclose various lighting control systems in which lamps or groups of lamps, in one or more zones, are varied in intensity to produce several different scenes of illumination. The level of intensity of the lamps constituting each lighting group is displayed to the user by either the number of light emitting diodes, LED's illuminated in a linear array of the LED's, or the position of a potentiometer slider in a linear track.
U.S. Pat. Nos. 5,191,265 and 5,463,286 disclose wall mounted programmable modular control systems for controlling groups of lights in one or more zones. In these systems, the lights are controlled by a master control wall module, a remote wall unit, and by a remote hand held control unit. The hand held unit communicates to the master control module by conventional infra-red (IR) transmission techniques.
The lighting control device disclosed in the U.S. Pat. No. 5,248,919 has all of the light control features needed to effectively and safely control the state and intensity level of one or more lights. However, this device lacks many desirable features such as wireless remote controllability, programmability, the ability to lock and unlock a preset, a delayed off, and the ability to store multiple presets. In many cases, it is desirable for a user to be able to have one or more lamps fade to a pre-selected intensity level or state, or to fade to off after a variable delay time. The lighting controls disclosed in the U.S. Pat. No. 5,248,919 are programmed to fade on to the last light level the dimmer was adjusted to prior to being turned off. This presents a problem because every time the light level of the dimmer is adjusted, the preset light level is changed. The user does not have the ability to lock in a light level that can be recalled when the unit is turned on after previously being turned off. It would be useful and desirable to be able to remotely control and program the preset light intensities of one or more lamps associated with one or more lighting scenes.
U.S. patent application Ser. No. 08/614,712 (now U.S. Pat. No. 5,909,087, which is assigned to the assignee of the present invention, and which is incorporated herein by reference, discloses a wallbox dimmer that can be programmed to store multiple preset levels. The infrared-handheld transmitter is manipulated to send infrared signals to the dimmer/receiver to enter a special programming mode. Once in programming mode, the user actuates a scene selector on the transmitter and then adjusts the light level by actuating a raise or a lower actuator on the dimmer/receiver or on the transmitter. The scene level is stored in the dimmer only when another scene select actuator is actuated or programming mode is exited. There is no way to store scene levels in the dimmer without using the transmitter and further there is no way to copy a scene preset from one actuator to another.
U.S. patent application Ser. No. 08/614,712 (now U.S. Pat. No. 5,909,087) further discloses the ability to lock and unlock a single preset light level into memory. With a preset light level locked into memory, when the dimmer is turned on, the dimmer goes to the light level locked in to the memory, and not to the last light level the dimmer was adjusted to prior to being turned off. The method for locking a preset light level into memory involves adjusting the dimmer to a desired light level using an intensity selector and then actuating a separate actuator three times in a short period of time (½ second) to lock the level as a preset. Only one preset can be locked into memory. The patent application (now U.S. Pat. No. 5,909,087) further discloses a method for unlocking the preset. To unlock the preset, the user actuates the separate actuator four times in a short period of ti
Jacoby, Jr. Elliot G.
Salvestrini Christopher J.
Sembhi Tarvinder S.
Alemu Ephrem
Drinker Biddle & Reath
Lutron Electronics Co. Inc.
Wong Don
LandOfFree
Multi-scene preset lighting controller does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-scene preset lighting controller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-scene preset lighting controller will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3088889