Multi-resolution geometry

Computer graphics processing and selective visual display system – Computer graphics processing – Adjusting level of detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06421051

ABSTRACT:

DESCRIPTION OF THE RELATED ART
1. Field of the Invention
This invention relates to the field of generating three-dimensional graphics; more specifically, to the field of generating multiple resolutions of an object in a three-dimensional environment.
2. Background of the Invention
Realistic three-dimensional object rendering for use in games and other software applications has been the goal for software and hardware makers in the computer industry for years. However, numerous problems prevent the achievement of realistic three-dimensional object rendering on a typical user's home computer.
Three-dimensional graphics use polygons to create the object to be rendered. These polygons are created and manipulated to portray curvature and details of the object. The more polygons used to create an object, the more detailed and realistic an object will appear. However, the more polygons used to create an object, the more computations required to render the object, thus slowing down the speed at which the object is rendered. Thus, there is a tradeoff from the developer's standpoint between speed and realism.
The resolution of this problem is not easy. As most users do not have the latest, most powerfull personal computer, the developer must design the objects for the lowest common denominator if the developer wants to reach the greatest number of potential users for the product. Thus, the developer must assume the user's processor is slow and is therefore capable of only rendering a small number of triangles per second. Therefore, the developer, when making the tradeoff described above, must favor the speed side of the equation, and design objects with fewer triangles than if faster machines were being used by all users. This solution, however, pleases neither the user with a low-end computer nor the user with the high-end computer. The user with the low-end computer will most likely still have images which are slow and choppy, because the developers are unwilling to completely sacrifice realism, and the user with a high-end computer will have images which appear artificial and robotic because the application is not designed to take advantage of the high-end machine's greater processing power. In fact, on some high-end systems, the application will be too fast to play or interact with because the polygon count is too low.
Another problem facing the developer is the fact that the same object requires more detail when closer to the screen than it requires if it is in the background. When an object is closer to the screen, the angles and straight edges of the polygons comprising the object can be seen more clearly. At this point, more polygons are needed to smooth the angles and continue the realistic rendering of the object. However, the most detailed version of the object cannot always be used to render the object because the application will require too much computing power to quickly and smoothly render images on the screen. In order to achieve smooth
3
D animation, the processor must render 3D objects at 20 to 60 frames per second. If too many polygons are used for each object, thus providing the necessary realism for the object when it is close to the screen, then the processor will not be able to achieve the above minimum frame rate required for smooth rendering.
One solution to allow realistic rendering of three-dimensional objects while also limiting the number of polygons on the screen is to use Level of Detail mapping. Level of Detail mapping provides different levels of resolutions of an object based upon the distance of the object to the screen. In order to create the different levels of detail, the developer must create different versions of the object for each level required. Typically, only three or four levels are used because storage of multiple versions of each object to be rendered can consume too much of the user's system resources.
There are several drawbacks to the level of detail methodology. First, this method has a large impact on system resources, as described above. Each object now requires three or four times more storage space than previously required to store each version of the object. Each level requires a separate vertex list as well as a separate data structure. Second, when transitioning from one level to another, an effect known as object popping occurs. The higher detailed version of an object is abruptly rendered as the object moves towards the screen, and “pops” out at the viewer, ruining the 3D immersive qualities of the application. The level of detail method also requires extra authoring of each version of the object, requiring more time from the developer. Level of Detail also does not address the lowest common denominator problem described above. The highest level of detail of each object must be created in consideration of the user with an inefficient computer who will be using the application. Thus, the highest level of detail cannot contain too many polygons or the image will appear slow and choppy on the low-end user's computer. Again, this image will also appear angular and robotic on the high-end user's computer, as it does not take advantage of the high-end computer's greater processing power.
SUMMARY OF THE INVENTION
In accordance with the present invention, an apparatus, system, and method is disclosed for producing realistic rendering of a 3D object while minimizing the use of user system resources and maximizing fidelity without sacrificing speed. The invention produces a continuous level of detail of an object using vertex merging responsive to the location of the object on the screen and other factors, thus eliminating the object popping effect. As the object moves towards the background, and therefore requires less polygons in order to provide a realistic rendering, vertices of the object are merged together in a manner designed to cause the least visual distortion. As the vertices are merged, polygons within the object are eliminated, thus lowering the polygon count of the object continuously as it moves farther and farther away from the screen. As an object moves towards the screen, vertices are added to the object, adding polygons to the object and thus providing a more realistic representation of the object as it grows close to the user and fine details become necessary. Thus, at any given moment, every object on the screen only has as many polygons as is required to provide a realistic rendering of the object. No polygons are being unnecessarily drawn, and thus optimum use is being made of the user's system. No object-popping effects are created as polygons are added or removed from the object on a continual basis based on the object's movement in the 3D environment.
Additionally, the invention requires only one version of the object to be authored and stored on the user's system, thus minimizing the impact on system resources. One vertex list is used which preferably specifies the highest level of detail, and the system in accordance with the present invention is able to then generate the continuous level of detail of the object for display on the screen. Also, the system advantageously increases and decreases the resolution of the objects on the fly. Thus, as only the current level of detail being displayed is stored, minimal use of memory is required. By storing certain minimum information which is determined prior to run-time to guide the resolution changes, the resolution changing is performed at run time at optimal speed. Another benefit of the present invention is its ability to allow a developer to tweak the vertex merging in accordance with the developer's own preferences. Finally, the invention automatically adjusts the amount of polygons in a screen responsive to the capabilities of a user's system, providing an optimal image for every user. In one embodiment, the invention monitors the system to determine the frame rate at which the frames are being rendered, and adjusts the total amount of polygons allowable on the screen at one time accordingly.
A

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-resolution geometry does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-resolution geometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-resolution geometry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829545

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.