Multi-position variable camshaft timing system actuated by...

Internal-combustion engines – Poppet valve operating mechanism – With means for varying timing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S090310

Reexamination Certificate

active

06374787

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to an internal combustion engine having a hydraulic control system for controlling the operation of a variable camshaft timing (VCT) system of the type in which the position of the camshaft is circumferentially varied relative to the position of a crankshaft in reaction to engine oil pressure. In such a VCT system, an electro-hydraulic control system is provided to effect the repositioning of the camshaft and a locking system is provided to selectively permit or prevent the electro-hydraulic control system from effecting such repositioning.
More specifically, this invention relates to a multi-position VCT system actuated by engine oil pressure and having a large number of thin, spring-biased vanes defining alternating fluid chambers therein.
2. Description of the Prior Art
It is known that the performance of an internal combustion engine can be improved by the use of dual camshafts, one to operate the intake valves of the various cylinders of the engine and the other to operate the exhaust valves. Typically, one of such camshafts is driven by the crankshaft of the engine, through a sprocket and chain drive or a belt drive, and the other of such camshafts is driven by the first, through a second sprocket and chain drive or a second belt drive. Alternatively, both of the camshafts can be driven is by a single crankshaft-powered chain drive or belt drive. It is also known that the performance of an internal combustion engine having dual camshafts, or but a single camshaft, can be improved by changing the positional relationship of a camshaft relative to the crankshaft.
It is also known that engine performance in an engine having one or more camshafts can be improved, specifically in terms of idle quality, fuel economy, reduced emissions, or increased torque. For example, the camshaft can be “retarded” for delayed closing of intake valves at idle for stability purposes and at high engine speed for enhanced output. Likewise, the camshaft can be “advanced” for premature closing of intake valves during mid-range operation to achieve higher volumetric efficiency with correspondingly higher levels of torque. In a dual-camshaft engine, retarding or advancing the camshaft is accomplished by changing the positional relationship of one of the camshafts, usually the camshaft that operates the intake valves of the engine, relative to the other camshaft and the crankshaft. Accordingly, retarding or advancing the camshaft varies the timing of the engine in terms of the operation of the intake valves relative to the exhaust valves, or in terms of the operation of the valves relative to the position of the crankshaft.
Heretofore, many VCT systems incorporated hydraulics including an oscillatable vane having opposed lobes and being secured to a camshaft within an enclosed housing. Such a VCT system often includes fluid circuits having check valves, a spool valve and springs, and electromechanical valves to transfer fluid within the housing from one side of a vane lobe to the other, or vice versa, to thereby oscillate the vane with respect to the housing in one direction or the other. Such oscillation is effective to advance or retard the position of the camshaft relative to the crankshaft. These VCT systems are typically “self-powered” and have a hydraulic system actuated in response to torque pulses flowing through the camshaft.
Unfortunately, the above VCT systems may have several drawbacks. One drawback with such VCT systems is the requirement of the set of check valves and the spool valve. The check valves are necessary to prevent back flow of oil pressure during periods of torque pulses from the camshaft. The spool valve is necessary to redirect flow from one fluid chamber to another within the housing. Using these valves involves many expensive high precision parts that further necessitate expensive precision machining of the camshaft.
Additionally, these precision parts may be easily fouled or jammed by contamination inherent in hydraulic systems. Relatively large contamination particles often lodge between lands on the spool valve and lands on a valve housing to jam the valve and render the VCT inoperative. Likewise, relatively small contamination particles may lodge between the outer diameter of the check or spool valve and the inner diameter of the valve housing to similarly jam the valve. Such contamination problems are typically approached by targeting a “zero contamination” level in the engine or by strategically placing independent screen filters in the hydraulic circuitry of the engine. Such approaches are known to be relatively expensive and only moderately effective to reduce contamination.
Another problem with such VCT systems is the inability to properly control the position of the spool during the initial start-up phase of the engine. When the engine first starts, it takes several seconds for oil pressure to develop. During that time, the position of the spool valve is unknown. Because the system logic has no known quantity in terms of position with which to perform the necessary calculations, the control system is prevented from effectively controlling the spool valve position until the engine reaches normal operating speed. Finally, it has been discovered that this type of VCT system is not optimized for use with all engine styles and sizes. Larger, higher-torque engines such as V-8's produce torque pulses sufficient to actuate the hydraulic system of such VCT systems. Regrettably however, smaller, lower-torque engines such as four and six cylinder's may not produce torque pulses sufficient to actuate the VCT hydraulic system.
Other VCT systems incorporate system hydraulics including a hub having multiple circumferentially spaced vanes cooperating within an enclosed housing having multiple circumferentially opposed walls. The vanes and the walls cooperate to define multiple fluid chambers, and the vanes divide the chambers into first and second sections. For example Shirai et al., U.S. Pat. No. 4,858,572, teaches use of such a system for adjusting an angular phase difference between an engine crankshaft and an engine camshaft. Shirai et al. further teaches that the circumferentially opposed walls of the housing limit the circumferential travel of each of the vanes within each chamber.
Shirai et al. discloses fluid circuits having check valves, a spool valve and springs, and electromechanical valves to transfer fluid within the housing from the first section to the second section, or vice versa, to thereby oscillate the vanes and hub with respect to the housing in one direction or the other. Shirai et al. further discloses a first connecting means for locking the hub and housing together when each vane is in abutment with one of the circumferentially opposed walls of each chamber. A second connecting means is provided for locking the hub and housing together when each vane is in abutment with the other of the circumferentially opposed walls of each chamber. Such connecting means are effective to keep the camshaft position either fully advanced or fully retarded relative to the crankshaft.
Unfortunately, Shirai et al. has several shortcomings. First, the previously mentioned problems involved with using a spool valve and check valve configurations are applicable to Shirai et al. Second, this arrangement appears to be limited to a total of only 15 degrees of phase adjustment between crankshaft position and camshaft position. The more angle of cam rotation, the more opportunity for efficiency and performance gains. Thus, only 15 degrees of adjustment severely limits the efficiency and performance gains compared to other systems that typically achieve 30 degrees of cam rotation. Third, this arrangement is only a two-position configuration, being positionable only in either the fully advanced or fully retarded positions with no positioning in-between whatsoever. Likewise, this configuration limits the efficiency and performance gains compared to other systems that allow for con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-position variable camshaft timing system actuated by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-position variable camshaft timing system actuated by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-position variable camshaft timing system actuated by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2819734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.