Multi-plane sheet connected sensors

Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S156000, C345S157000

Reexamination Certificate

active

06310606

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to structuring for sheet supported sensors and associated circuitry in hand-operated graphic image controllers, and particularly six degree of freedom (3D) computer image controllers which serve as interface input devices between the human hand(s) and graphic image displays such as a computer or television display, a head mount display or any display capable of being viewed or perceived as being viewed by a human.
2. Description of the Prior Art
Although there are many related physical-to-electrical hand-controlled interfacing devices interfacing with computers, game consoles and the like image generation machines connected to image displays and the like shown and described in prior art, no disclosures or documents teach or suggest singularly or in reasonable combination the present claimed invention.
SUMMARY OF THE INVENTION
The following summary and detailed description is of best modes and preferred structures for carrying out the invention, and although there are clearly changes which could be made to that which is specifically herein described and shown in the included drawings, for the sake of brevity of this disclosure, all of these changes which fall within the true scope of the present invention have not herein been detailed.
In order that 6 DOF (3D) controllers be more affordable, and for a user to be easily able to control objects and/or navigate a viewpoint within a three-dimensional graphics display, I have developed improved, low-cost hand operated 6 DOF (3D) controllers for use with a computer or computerized television or the like host device. The controllers provide structuring for converting full six degrees of freedom physical input provided by a human hand on a hand operable single input member into representative outputs or signals useful either directly or indirectly for controlling or assisting in controlling graphic image displays. The present controllers sense hand inputs on the input member via movement or force influenced sensors, and send information describing rotation or rotational force of the hand operable input member in either direction about three mutually perpendicular bi-directional axes herein referred to as yaw, pitch and roll, (or first, second and third); and information describing linear moment of the hand operable input member along the axes to a host computer or like graphics generation device for control of graphics of a display, thus six degrees of freedom of movement or force against the input member are converted to input-representative signals for control of graphics images.
The present controllers include the hand operable input member defined in relationship to a reference member of the controller. The input member can be a trackball operable relative to a housing (reference member) or alternatively, the input member can be any handle fit to be manipulated by a human hand, such as a joystick type handle, but in either case, the input member accepts hand input relative to the reference member, and the converter acts or operates from the hand inputs to cause influencing of the sensors which inform or shape electricity to be used as, or to produce such as by way of processing, an output signal suitable for a host device to at least in part control the image on the display of the host device.
The present 6 DOF (3D) controller provides structuring for sensors to be located, in some embodiments, in a generally single plane, such as on a substantially flat flexible membrane sensor sheet, or a circuit board sheet. The use of flat sheet mounted or positioned sensors preferably electrically connected with fixed-place trace circuitry provides the advantages of very low cost sensor and associated sensor circuit manufacturing; ease in replacing a malfunctioning sensor or conductor by entire sheet replacement, and increased reliability due to the elimination of individually insulated wires to the sensors. Clearly, an image controller need not provide a full 6 DOF (3D) to be benefited by the application of the flexible sheet connected to the sensors as herein taught.
The use of sheet supported sensors and associated circuits enable the use of highly automated circuit and sensor defining and locating, resulting in lower manufacturing costs and higher product reliability. The utilization of flat sheet substratum supporting the sensors, and preferably sensor circuitry in conductive fixed-place trace form, provides many advantages, with one being the allowance of a short or low profile 6 DOF (3D) controller, and another, as previously mentioned, lower cost in manufacturing. In at least one preferred embodiment, all sensors for 6 DOF (3D) are positioned on one substantially flat sheet member, such as a circuit board sheet or membrane sensor sheet, and electrically conductive traces are applied to the sheet members and engaging the sensors. The conductive traces can be used to bring electricity to the sensors, depending on the sensor type selected to be utilized, and to conduct electricity controlled, shaped or informed by the sensor to an electronic processor or cable-out lead or the like.
As will be detailed in reference to a present embodiment of 6 DOF (3D) controller, the sensors and conductive traces can be manufactured on a generally flat flexible membrane sensor sheet material such as a non-conductive plastic sheet, which then may or may not be bent into a three dimensional configuration, even a widely-spread 3-D sensor constellation, thus sheet supported sensor structuring provides the advantages of very low cost sensor and associated sensor circuit manufacturing; ease in replacing a malfunctioning sensor or conductor by entire sheet replacement, and increased reliability due to the elimination of individually insulated wires to the sensors.
The present invention solves the aforementioned prior art problems associated with 6 DOF (3D) controllers having one 6 DOF input member, with multiple, individually hand mounted and positioned sensors or sensor units in widely-spread three dimensional constellations, and the problems of hand applied wiring of individually insulated wire to the individual sensors or sensor units. The present 6 DOF (3D) controller solves these problems primarily with sheet supported sensor structuring and most associated circuitry on the sheet which is at least initially flat when the sensors and conductive circuit traces are applied; the sheet circuitry and sensors being an arrangement particularly well suited for automated manufacturing, and well suited for fast and simple test-point trouble shooting and single board or “sheet” unit replacement if malfunction occurs. Hand applying of the sensors and associated electrical conductors onto the flat sheet is not outside the scope of the invention, but is not as great of an advancement, for reasons of cost and reliability, compared to utilizing automated manufacturing processes that are currently in wide use.
Automated manufacturing of circuit boards with fixed-place trace conductors, sensors, discrete electronic components and integrated chips is in wide use today for television, computer, video and stereo manufacturing for example, and can employ the plugging-in of sensor and electrical components with computer controlled machinery, and the application of conductive trace conductors onto the otherwise non-conductive circuit board sheets is usually performed using automatic machinery, wherein the solder or conductive material adheres to printed fluxed or non-etched areas where electrical connections and conductive traces are desired, although other processes are used. Automated manufacturing of flat, flexible membrane sensor sheets is in wide use today for computer keyboards, programmable computer keypads, and consumer electronics control pads, to name just a few for example. Flexible membrane sensor sheets are currently being manufactured by way of utilizing non-conductive flexible plastics sheets, and printing thereon with electrically conductive ink when the sheets are laying flat, to define c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-plane sheet connected sensors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-plane sheet connected sensors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-plane sheet connected sensors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2551544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.