Pipes and tubular conduits – Flexible – Distinct layers
Reexamination Certificate
1999-09-27
2002-04-30
Hook, James (Department: 3752)
Pipes and tubular conduits
Flexible
Distinct layers
C138S141000, C138SDIG001, C138SDIG003, C138SDIG007, C428S036910
Reexamination Certificate
active
06378562
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to tubing for use in a motor vehicle. More particularly, the present invention relates to a multi-layer tube which can be employed for transporting hydrocarbon fluids such as a fuel line or vapor recovery line of a motor vehicle.
BACKGROUND OF THE INVENTION
Single layer fuel lines and vapor return lines of synthetic materials such as polyamides have been proposed and employed in the past. Fuel lines employing such materials generally have lengths of at least several meters. It is important that the line, once installed, not materially change during the length of operation, either by shrinkage or elongation or as a result of the stresses to which the line may be subject during use.
It is also becoming increasingly important that the lines employed be essentially impervious to hydrocarbon emissions due to permeation through the tubing. It is anticipated that future Federal and state regulations will fix the limit for permissible hydrocarbon emissions due to permeation through such lines. Regulations which will be enacted in states such as California will fix the total passive hydrocarbon emission for a vehicle at 2 g/m
2
per 24 hour period as calculated by evaporative emission testing methods such as those outlined in Title 13 of the California Code of Regulations, section 1976, proposed amendment of Sep. 26, 1991. To achieve the desired total vehicle emission levels, a hydrocarbon permeation level for the lines equal to or below 0.5 g/m
2
per 24 hour period would be required. Finally, it is also imperative that the fuel line employed be impervious to interaction with corrosive materials present in the fuel such as oxidative agents and surfactants as well as additives such as ethanol and methanol.
Various types of tubing have been proposed to address these concerns. In general, the most successful of these have been co-extruded multi-layer tubing which employ a relatively thick outer layer composed of a material resistant to the exterior environment. The innermost layer is thinner and is composed of a material which is chosen for its ability to block diffusion of materials, such as aliphatic hydrocarbons, alcohols and other materials present in fuel blends, to the outer layer. The materials of choice for the inner layer are polyamides such as Nylon 6, Nylon 6.6, Nylon 11 and Nylon 12.
Alcohol and aromatics in the fluid conveyed through the tube diffuse at different rates through the tubing wall from the aliphatic components. The resulting change in the composition of the liquid in the tubing can change the solubility thresholds of the material so as, for example, to be able to crystalize monomers and oligomers of materials, such as Nylon 11 and Nylon 12, into the liquid. The presence of copper ions, which can be picked up from the fuel pump, accelerates this crystallization. The crystallized precipitate can block filters and fuel injectors and collect to limit travel of the fuel-pump or carburetor float as well as build up on critical control surfaces of the fuel pump.
In U.S. Pat. No. 5,076,329 to Brunnhofer, a five-layer fuel line is proposed which is composed of a thick outer layer formed of Nylon 11 or Nylon 12, a thick intermediate layer of Nylon 6, and a thin intermediate bonding layer between and bonded to the intermediate and outer layers formed of a polyethylene or a polypropylene. On the interior of the tube is an inner layer of Nylon 6 with a thin intermediate solvent-blocking layer formed of an ethylene-vinyl alcohol copolymer transposed between. The use of Nylon 6 in the inner fluid contacting surface is designed to eliminate at least a portion of the monomer and oligomer dissolution which occurs with Nylon 11 or Nylon 12.
In U.S. Pat. No. 5,038,833 to Brunnhofer, a three-layer fuel line is proposed in which a tube is formed having a co-extruded outer wall of Nylon 11 or Nylon 12, an intermediate alcohol barrier wall formed from an ethylene-vinyl alcohol copolymer, and an inner water-blocking wall formed from a polyamide such as Nylon 11 or Nylon 12. In DE 40 06 870, a fuel line is proposed in which an intermediate solvent barrier layer is formed of unmodified Nylon 6.6 either separately or in combination with blends of polyamide elastomers. The internal layer is also composed of polyamides; preferably modified or unmodified Nylon 6 while the outer layer is composed of either Nylon 6 or Nylon 12.
Another tubing designed to be resistant to alcoholic media is disclosed in UK Application Number 2 204 376 A in which a tube is produced which has a thick outer layer composed of polyamides such as Nylon 6 or 6.6 and/or Nylon 11 or 12 which are co-extruded with an alcohol-resistant polyolefin, a co-polymer of propylene and maleic acid.
Heretofore it has been extremely difficult to obtain satisfactory lamination characteristics between dissimilar polymer layers. Thus all of the multi-layer tubing proposed previously has employed polyamide-based materials in most or all of the multiple layers. While many more effective solvent-resistant chemicals exist, their use in this area is limited due to limited elongation properties, strength and compatibility with Nylon 11 and 12. Additionally, the previous disclosures fail to address or appreciate the phenomenon of electrostatic discharge.
Electrostatic discharge can be defined as the release of electric charge built up or derived from the passage of charged particles through a medium or conduit composed of essentially non-conductive materials. The electrostatic charge is repeatedly replenished with the passage of additional volumes of fuel through the conduit. Discharge repeatedly occurs in the same localized area gradually eroding the area and leading to eventual rupture of the tubing. Such a rupture of the tubing can lead to the danger of fire and explosion of the flammable contents of the tubing.
Thus it would be desirable to provide a tubing material which could be employed in motor vehicles which would be durable and prevent or reduce permeation of organic materials therethrough. It would also be desirable to provide a tubing material which would be essentially nonreactive with components of the liquid being conveyed therein. Finally, it would be desirable to provide a tubing material which would be capable of preventing the build-up of electrostatic charge therein or would be capable of safely dissipating any electrostatic charge induced therein.
SUMMARY OF THE INVENTION
The present invention is a multi-layer tube for connection to a motor vehicle system to transport fluids containing hydrocarbons such as in a fuel line, a vapor return line or vapor recovery line. The elongated multi-layer tube of the present invention includes a first layer disposed radially innermost and having an inner surface capable of prolonged exposure to a fluid containing hydrocarbons and an outer surface spaced a first predetermined radial thickness from the inner surface. The first layer consists essentially of an extrudable, melt-processible thermoplastic. A second layer has a second predetermined radial thickness equal to or less than the thickness of the first layer. The second layer is bonded to the outer surface of the first layer and consists essentially of an extrudable, melt processible thermoplastic capable of sufficiently permanent laminar adhesion with the outer surface of the first layer. A third layer has a third predetermined radial thickness greater than the thickness of the first layer. The third layer has an inner face capable of sufficiently permanent laminar adhesion to the second layer and an outer face. The third layer consists essentially of an extrudable, melt-processible thermoplastic. At least one layer of the multi-layer tube is capable of dissipating electrostatic energy in a range between about 10
4
to 10
9
Ohm/cm
2
.
REFERENCES:
patent: 3070132 (1962-12-01), Sheridan
patent: 3166688 (1965-01-01), Rowand et al.
patent: 3473087 (1969-10-01), Slade
patent: 3561493 (1971-02-01), Maillard et al.
patent: 3828112 (1974-08-01), Johansen et al.
patent: 3907955 (1975-09-0
Mitchell Frank L.
Noone David L.
Wenig Peter
Hook James
IT&T Industries, Inc.
Young & Basile P.C.
LandOfFree
Multi-layer tubing having electrostatic dissipation for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-layer tubing having electrostatic dissipation for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-layer tubing having electrostatic dissipation for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887561