Conveyors: power-driven – With means to facilitate working – treating – or inspecting... – Means to convey a palleted load back and forth between an...
Reexamination Certificate
2001-04-02
2004-02-10
Hess, Douglas (Department: 3651)
Conveyors: power-driven
With means to facilitate working, treating, or inspecting...
Means to convey a palleted load back and forth between an...
C198S687100, C198S465400, C198S465200
Reexamination Certificate
active
06688451
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates generally to the field of robotics. In particular, this invention relates to a multi-head robot device, system and method, which include a number of robotic devices, each of which is able to operate independently at any of a number of discrete destinations.
2. Related Art
The field of robotics is a rapidly developing area of technology. Robotic systems are continually being adapted to operate in new market niches, and to operate at higher speeds in existing product areas. Robotics will continue to play an increasingly important role in the economic viability of existing, as well as emerging, technologies. For example, manufacture of miniature assemblies incorporating MEMS (Micro-Electro-Mechanics) devices is tedious and extremely difficult to perform efficiently for even a skilled person. Similarly repetitive and labor intensive tasks are present in many other industries, including photonics, laboratory automation, electronics assembly, food processing, material handling, and pouch singulation. Inherent in each of these processes is the need for a high speed transfer system which can repeatedly target variable locations, acquire an object, and then deposit that object at a specific location.
In general, the related art has provided a variety of robotic devices with which to address these tasks. For instance, in the field of material handling there is the task of singulation, or the separating of items one from another. Attempts have been made to increase the speed of singulation using a large number of tilted conveyors. However, this approach introduces the problem of the amount of space required to accommodate the numerous conveyors. A second approach involves computer vision systems to direct a single robot arm to pick a single package and transfer it. This approach requires a complex robot gripper, one which is capable of grasping any shape or size package.
Another example of an industry having a need for high speed transfer systems is the food processing industry. Food processing lines, such as cookie process lines, typically require that individual cookies be picked from a conveyor and either placed in a package, or prepared for further processing. Current automation takes one of two forms. The first is a series of industrial robot arms that transfer one or two cookies at a time. Many of these, typically SCARA (Selectively Compliant Articulated Robot Arm) robot arms and attendant vision systems must be employed on a single cookie conveyor to handle the volume of product. The second form of automation utilizes a spider-like device which descends to pick a cookie and then transfer it. Here again, a vision system is required, and range of motion is limited.
Finally, a governmental requirement to enhance worker safety calls for retrofitting of assembly lines to curtail ergonomic injuries caused by repetitive motions. This requirement provides further incentive for manufacturers to address the long felt need for high speed, high throughput robotic systems involving variable tasks.
However, known robotic machines are limited to the speed at which a single robotic device can be manipulated. That is, the industry is confronted by physical limitations that curb the development of machinery capable of the increases in speed necessary to meet the challenges confronting industry.
Therefore, a novel apparatus which is less complex and costly than presently available robotic systems, but which provides for increases in speed, throughput, and tasks is believed clearly desirable.
SUMMARY OF THE INVENTION
As noted initially and more fully described herein, the the present invention solves these problems in the related art by providing a multi-head robot system capable of delivering numerous robotic devices to a task site. Since a number of robotic devices are performing tasks simultaneously, the tasks can be completed quickly, and each individual robotic device need not move at an extremely fast speed. The sequence in which robotic devices arrive at or leave a task site is unlimited. That is, the robotic delivery system is capable of “leapfrogging” robotic devices, or placing them in random order, where ever they are most needed. The robotic devices typically function as material handling instruments, although other embodiments are readily available.
In a first general aspect, the present invention presents a material handling system comprising: at least one material handling device; at least one track for transporting said material handling device; a plurality of workstations located along the track; and wherein each material handling device is removably coupled to the track.
In a second general aspect, the present invention presents a system comprising: a conveyor track; at least one robot removably attached to said conveyor track; a drive system for movement of the conveyor track; at least one workstation adapted to operationally receive said robot; and a coupling mechanism to disengage or engage the robot to the conveyor track.
In a third general aspect, the present invention presents a delivery system for a robotic device comprising: a first track guide element for routing the robotic device; a conveyor track for transporting the robotic device, said conveyor track operably positioned with said fixed track guide element; at least one robotic device removably attached to said conveyor track and said guide element; a drive system for maintaining the speed of the conveyor track; at least one workstation adapted to operationally receive said robotic device from said conveyor track and said guide element; and a coupling mechanism operationally attached to the robotic device which allows the robotic device to disengage or engage the conveyor track and the guide element.
In a fourth general aspect, the present invention presents a material handling system comprising: a plurality of independent material handling devices; at least one continuously moving track for transporting said material handling devices; a drive system for maintaining said track at a constant speed; a plurality of workstations located along the route traversed by the track; and wherein each material handling device further comprises means for removably attaching itself to the track.
In a fifth general aspect, the present invention presents a delivery system for a robotic device comprising: a track guide element for routing the robotic device; at least one robotic device removably attached to said guide element, said robotic device capable of propelling itself along said guide element; at least one workstation adapted to operationally receive said robotic device from said guide element; and a coupling mechanism operationally attached to the robotic device which allows the robotic device to disengage or engage the guide element.
In a sixth general aspect, the present invention presents a material handling system comprising: a plurality of independent material handling devices; at least one continuously moving track for transporting said material handling devices; a drive system for maintaining said track at a constant speed; a plurality of workstations located along the route traversed by the track; and wherein each material handling device further comprises a device for removably attaching the material handling device to the track.
In a seventh general aspect, the present invention presents a transport system for a docking end effector comprising: a first track; a plurality of end effectors removably coupled to said track; at least one docking station adapted to receive at least one of said end effectors; a vision system adapted to control operation of said transport system; a position sensor system adapted to control operation of said transport system; a drive system operationally connected to said track; at least one second track adapted to receive at least one end effector, said second track further adapted to provide access to the first track; a system for supplying control signals to the said end effector; a system for supplying power to sai
Derby Stephen J.
Smith Jeffrey M.
Hess Douglas
Schmeiser Olsen & Watts
LandOfFree
Multi-head robot system and method of use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-head robot system and method of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-head robot system and method of use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3303779