Multi-glazed panel and method of fabrication

Static structures (e.g. – buildings) – Sectioned imperforate facing within perpheral frame; e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S456000, C052S311100, C052S311200, C052S311300, C428S013000, C428S038000, C428S046000, C428S060000, C428S156000, C428S213000, C428S432000, C156S063000, C264S220000

Reexamination Certificate

active

06449916

ABSTRACT:

The present application describes technical matter of a previously filed disclosure filed with the United States Patent And Trademark Office disclosure program on Apr. 20, 1998 as Ser. No. 436835 and which contains subject matter substantially the same as that described and claimed in the present application.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to transparent decorative window glazing constructions and more particularly to a method of making a decorative window glazing and a product of such method.
2. Description of Related Art
The following art defines the present state of this field:
Howes, et. al. U.S. Pat. No. 5,558,827 A simulated multipane window consists of a thick transparent plastic resin layer molded onto a sheet of glass. The outer surface of the resin layer includes a simulated came structure between adjacent panel portions of the window. The decorative window is produced as a replica of a glass master, originally made using actual glass panels such as beveled glass panels. The master is then covered with a mixture of silicone, catalysts for curing the silicone, and a light oil to form a mold. After curing, the mold is removed from the glass master, inverted, and a glass sheet, which has been prepared for the process by being coated with organosilane ester, is clamped thereto. The mold cavity is then filled with a mixture of a clear plastic resin, catalysts for curing the resin, and organosilane ester. After curing, the simulated multipane window is removed from the mold.
Howes, et. al. U.S. Pat. No. 5,783,264 describes a decorative window consisting of a thick transparent plastic resin layer laminated to a sheet of glass The outer surface of resin layer includes decorative features, such as deeply contoured pictographic images and finely detailed textured surfaces. The decorative window is produced as a replica of a glass master originally made using conventional grinding and surface finishing techniques. The master is then covered with a mixture of silicone, catalysts for curing the silicone, and a light oil to form a mold. After curing, the mold is removed from the glass master, inverted, and a glass sheet, which has been prepared for the process by being coated with organosilane ester, is clamped thereto. The mold cavity is then filled with a mixture of a clear plastic resin, catalysts for curing the resin, and organosilane ester. After curing, the replicated decorative window is removed from the mold.
Howes, et. al. U.S. Pat. No. 5,944,862 describes a decorative window consisting of a thick transparent plastic resin layer laminated to a sheet of glass. The outer surface of resin layer includes decorative features, such as deeply contoured pictographic images and finely detailed textured surfaces. The decorative window is produced as replica of a glass master originally made using conventional grinding and surfaces finishing techniques. The master is then covered with a mixture of silicone, catalysts for curing the silicone, and a light oil to form a mold. After curing, the mold is removed from the glass master, inverted, and a glass sheet, which has been prepared for the process by being coated with organosilane ester, is clamped thereto. The mold cavity is then filled with a mixture of a clear plastic resin, catalysts for curing the resin, and organosilane ester. After curing, the replicated decorative window is removed from the mold.
Catalano, et. al. U.S. Pat. No. 5,061,531 describes an insulating architectural glass unit for residential, nonresidential and commercial applications having at least two panes of glass plate separated by an encapsulated air space, constructed with an injection molded frame of relatively low thermal conductivity material, wherein a secondary seal between the individual glass plates and a frame structure surrounding the glass plates are molded as a single piece continuous structure in a single step operation.
Eichhom, et al. U.S. Pat. No. 5,840,391 describes a decorative glass sheet simulating a multi-pane, camed window or door, and a method for forming the same. The decorative glass sheet includes a glass panel having an outer surface. At least one groove is formed through the outer surface and into the glass panel. Each groove includes a first wall extending from a first peripheral edge to a groove bottom apex, and a second wall extending from the apex to a second peripheral edge. The second wall has a width greater than a width of the first wall. At least one decorative caming strip is adhered to the outer surface of the glass panel and is disposed adjacent and along the first peripheral edge of the at least one groove.
Catalano, et al. U.S. Pat. No. 4,822,680 describes a polyurethane-filmed glass material for use as monolithic insulated glass or laminated glass in spandrel application. A polyurethane sheet, which has been ultraviolet light-stabilized, is pigmented, coated or otherwise colored to produce a coloring that is predictable and reproducible. A coupling agent is employed and the polyurethane adheres directly to a glass sheet without glues or adhesives. The manufacture of the glass material includes laying a sheet of colored polyurethane sheet material on a sheet of glass, which has been prepared with a coupling agent. Outside surfaces of the polyurethane are coated with a release material. The glass sheet and the prepared polyurethane sheet are then loaded into a vacuum bag, which in turn is then loaded into an autoclave. The bag is subjected to a vacuum while the autoclave vessel is pressurized. The autoclave vessel is simultaneously run through a temperature curve to heat and cool the polyurethane and glass whereby the polyurethane is temporarily softened and thereby adheres to the glass. The laminated product is thereafter tempered.
Butler, et. al. U.S. Pat. No. 4,335,170 describes a method of simulating stained and leaded glass windows, including bonding lead strips to a pane of glass or plastic to form design segments, and bonding coatings to the pane coincidental with the design segments to simulate colored glass, and the simulated stained and leaded glass structure produced by the method.
Flint, et. al. U.S. Pat. No. 3,998,680 describes a method of fabricating insulating glass units with a hot-melt butyl rubber sealant composition.
Weaver, et. al. U.S. Pat. No. 4,830,804 describes an insert which forms the show or finish surface (the surface exposed to the weather) for an elastomeric gasket in an encapsulated window assembly. The insert is thermoformed from a sheet of plastic and placed in the lower half of a mold. A sheet of glazing material is also placed in the lower mold half, and an upper mold half is utilized to close the mold cavity. Gasket forming material is injected into the mold cavity to form a gasket in situ that adheres to both the peripheral marginal areas of the transparent sheet and the insert. The insert can be formed with a gate portion that extends into the gate area of the mold and prevents the gasket forming material from flowing onto the surface of the insert that is to be exposed in the final glazing. In one embodiment, the insert can be formed in its final configuration with a central opening leaving the transparent sheet exposed. In an alternate embodiment, the insert is formed with a centrally disposed portion that covers the transparent sheet material to protect it. A groove can be formed in the insert to facilitate removal of the central portion.
Thomas, et. al. U.S. Pat. No. 4,216,184 describes a method of injection-molding articles of plastics material onto a preformed web inserted into the mould, the web held under substantially constant tension during the closing of the mould, between a pair of clamps, the proximal clamp being fixed relative to the mould and the distal clamp free but bearing a load to furnish the desired tension in the web. The load may be imposed by a weight attached to the distal clamp, conveniently by means of an electromagnet.
Lahnala, et. al. U.S. Pat. No. 5,997,793 describes a process for forming an enca

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-glazed panel and method of fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-glazed panel and method of fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-glazed panel and method of fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2827444

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.