Radiant energy – Invisible radiant energy responsive electric signalling – Plural signalling means
Reexamination Certificate
1999-05-24
2001-11-13
Hannaher, Constantine (Department: 2878)
Radiant energy
Invisible radiant energy responsive electric signalling
Plural signalling means
C250S385100, C250S370010
Reexamination Certificate
active
06316773
ABSTRACT:
TECHNICAL FIELD
The present invention is directed to x-ray digital radiography, including dual-energy imaging, computed tomography (CT), microtomography and x-ray microscopy; nuclear medicine, including quantitative autoradiography, single photon emission tomography (SPECT) and positron emission tomography (PET); any medical detector technology involving monitoring, measuring, recording or projection of ionizing radiation of any energy range; bio-optical imaging, including optical confocal microscopy and optical tomography; and industrial applications, such as aerospace imaging, security surveillance systems, and non-destructive imaging. The invention is more particularly directed to multi-density and multi-atomic number detector media implemented, if needed, by kinestasis or time-delay integration for use in the above applications.
BACKGROUND ART
The capture and detection of ionizing radiation in an efficient way, without significant loss or degradation of the image information, is of paramount significance in medical imaging. Recent advances in medical detector technology make it possible for superior images to be produced by digital electronic techniques, such as digital radiography, as opposed to classical film-screen techniques. In fact, new methods of radiographic imaging that utilize advances in electronics and computer technology have been shown to improve diagnostic quality and allow for new diagnostic modalities with reduced patient dose. Specifically, digital radiography has many advantages over conventional radiography such as expanded display of detector dynamic range, fast image acquisition and display, convenient storage, transmission and display of stored images without degradation, extended capabilities of data analysis and image processing, and reduced patient dose.
Different detector technologies and beam geometries have been proposed for digital radiography, such as scintillator-photodiode systems, high-pressure gas filled detectors, scintillator-photomultiplier systems, kinestatic charge detectors, proximity image intensifier/CCD devices, phosphor screen-photodiode systems and diode arrays.
Some of the disadvantages of known digital radiographic systems are the relatively high initial cost and the limited detector resolution. The efficient detection of X-ray radiation is the main problem in digital radiography, computed tomography, and affiliated disciplines. Recent advances in medical detector technology suggest that superior radiation images may be produced by means of digital electronic techniques. In particular, recent advances in electronics and computer technology have provided improved diagnostic quality and diagnostic modalities while reducing doses of incident radiation. Though several new detectors have been proposed for digital radiography and computed tomography, there is still no single technology of choice that addresses all of the issues for optimal imaging. The technology of choice depends upon several image quality criteria such as high quantum and energy absorption efficiency, high detector quantum efficiency (DQE), high spatial resolution, negligible scattered acceptance, detector geometry, fast readout, high dynamic range, image correction and display capabilities, and of course, acceptable cost. One of the primary problems with digital radiography is the detection of scattered radiation which reduces the contrast of the image. Known line scanning techniques inefficiently utilize the X-ray tube output. This limitation can be overcome by utilizing a wider slot-shaped X-ray beam and collection of multiple lines simultaneously.
One approach to overcome the aforementioned disadvantages is discussed in the patent application U.S. Ser. No. 60/011,499, which is incorporated herein by reference. The approach disclosed therein provides a dual-energy gas microstrip wherein low energy and high energy images are obtained and are compared to provide a high contrast image. Although this approach is effective, it only employs a single medium, the gas surrounding the microstrip, to develop the dual image. Through further research, new devices have been developed which further improve these detection techniques. These devices are described in U.S. patent application Ser. No. 09/078,991 incorporated herein by reference. While this invention provides good spatial and contrast resolution with low dose, the image quality and image contrast could be improved.
In particular, ion and electron interaction within the detector creates random ion/electron motion within the detector element. This motion is detected along with the primary ion/electron flow created by the target. Since the motion is random, it does not completely occlude the image, but reduces the image quality by creating ghost images, cloudiness, or reduced contrast, collectively referred to as noise. Therefore, a need exists for a detector that provides an improved image by reducing the detection of random ion/electron motion. An additional need exists for a detector that amplifies the primary ion/electron flow improving image signal, improving the signal to noise ratio, and generating better contrast between the images.
DISCLOSURE OF INVENTION
In light of the foregoing, it is a first aspect of the present invention to provide a multi-density and multi-atomic number detector media for applications such as, but not limited to, imaging, dosimetry, and radiation monitoring and combinations thereof.
Another aspect of the present invention is to provide an ionization device or source to project ionizing radiation (X-rays, gamma rays, fast particles, neutrons) of any energy range for any application through an object whereupon the rays are received by a multi-detector.
A further aspect of the present invention, as set forth above, is to provide the multi-detector in a dual energy configuration, wherein the dual energy detector receives a bimodal energy spectrum analyzed by two different physical media. In either case, the energy can be polychromatic or monochromatic. In the case of a polychromatic energy spectrum, the single energy term is used as equivalent to “average” or “effective energy” of the polychromatic spectrum.
Yet another aspect of the present invention, as set forth above, is to provide the multi-detector with a low energy detector adjacent to a high energy detector.
Still another aspect of the present invention, as set forth above, is to apply separate electric fields to both low and high energy detectors as the incident radiation is projected therethrough, wherein the low energy detector may either be a gas ionization detector or a semiconductor ionization detector and the high energy detector is the other.
A further aspect of the present invention, as set forth above, is to generate images from the two detectors which are then received by a microprocessor to generate a subtracted image signal for display of the object.
Yet another aspect of the present invention, as set forth above, is to interpose a high pass energy filter needed between the two detectors to assist in developing the contrasted image signal, wherein a low contrast is obtained through weighted subtraction of the two images, such as for soft tissue.
Yet a further aspect of the present invention, as set forth above, is to provide a mechanism for moving the multi-detector as it receives the ionizing radiation and wherein the electric field applied is adjusted to allow for implementation of kinestatic, or time delay integration techniques, or both.
An additional aspect of the present invention, as set forth above, is to provide a multi-detector wherein the gas ionization detector includes a high voltage plate opposite a substrate with a plurality of interleaved anodes and cathodes and wherein a semiconductor ionization detector includes a bias electrode on one side of a semiconductor substrate opposite a plurality of collection electrodes.
Yet another aspect of the present invention, as set forth above, is to provide a multi-detector within two different physical media which the incident radiation is first absorbed by a low
Hannaher Constantine
Israel Andrew
Renner Kenner Greive Bobak Taylor & Weber
The University of Akron
LandOfFree
Multi-density and multi-atomic number detector media with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-density and multi-atomic number detector media with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-density and multi-atomic number detector media with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2618441