Internal-combustion engines – Convertible cycle
Reexamination Certificate
2002-12-18
2004-07-06
Kamen, Noah P. (Department: 3747)
Internal-combustion engines
Convertible cycle
C123S04500R
Reexamination Certificate
active
06758170
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to multiple-cycle internal combustion engines and, more specifically, to a trainable, scavenger-ported piston with two and four-cycle capabilities.
2. Description of the Prior Art
There are other variable cycle pistons designed for internal combustion engines. Typical of these is U.S. Pat. No. 5,699,758 issued to John N. Clarke on Dec. 23, 1997.
Another patent was issued to Marius A. Paul et al. on May 21, 1996 as U.S. Pat. No. 5,517,951. U.S. Pat. No. 5,193,492 was issued on Mar. 16, 1993 to Hideo Kawamura. Yet another U.S. Pat. No. 5,007,382 was issued to Hideo Kawamura on Apr. 16, 1991.
A method for operating a reciprocating piston-type internal combustion engine selectively in two-stroke, four-stroke, and six-stroke mode includes; providing transfer valves, transfer passage means between piston cylinders, selectively controlling the actuation and timing of the intake, exhaust, and transfer valves, and alternatively operating the intake and exhaust valves for each piston cylinder in overlapping sequence during each crankshaft revolution to provide two-stroke operation, operating the intake and exhaust valves in sequence during each second crankshaft revolution to provide four-stroke operation, operating the intake, exhaust, and transfer valves sequentially to cause a secondary expansion stroke in an adjacent piston cylinder to provide six-stroke operation of the engine.
A universal internal combustion engine that is electronically and reversibly convertible from four-stroke operation to two-stroke operation, the engine having intake and exhaust valves with an electro-hydraulic actuator system for actuating the valves in accordance with electronic control signals from an electronic control module, the electro-hydraulic actuator system having an electronic actuator for each valve coupled to a slide valve for a discrete supply of pressurized hydraulic fluid to a hydraulic piston for each valve, the electronic control module having a program for independent activation of each electronic actuator for select operation of each intake and exhaust valve at any time during the operating cycle.
The present invention lies in a 2-4 cycle change-over engine and it=s control unit which perform 2 cycle running of the uniflow type by closing a suction valve at an upper portion of the engine and working a valve (a rotational sleeve) at a lower portion of a cylinder when the engine rotates in a lower number of revolution than a predetermined number of revolution and a load is larger than a predetermined value, and perform changeover into 4-cycle running by always closing a scavenging port at a lower portion of the cylinder by means of the valve (the rotational sleeve) at the lower portion of the cylinder and working the suction valve at the upper portion of the cylinder when a higher revolution than a predetermined number of revolution is given and an engine load is lighter than a predetermined load.
This cycle changeable engine includes first intake valves for a four-cycle operation which are disposed in intake ports formed in a cylinder head, exhaust valves disposed in exhaust ports, second intake valves for a two-cycle operation, disposed in intake ports formed at the lower part of a cylinder, and an electromagnetic valve driving device for opening and closing each of the valves by electromagnetic force. The engine includes also a controller which actuates either the first or second intake valves for opening and closing with the others being kept closed in response to a detection signal from detection means for detecting the number of revolutions or the load of the engine, and changes the operational condition of the engine to the two-cycle or four-cycle operation. In this manner the engine is operated in the two-cycle operation at a low speed revolution of the engine to improve an output torque and is operated in the four-cycle operation at a high-speed revolution of the engine to reduce fuel consumption, to improve mean effective pressure and volume efficiency and to
While these variable-cycle engines may be suitable for the purposes for which they were designed, they would not be as suitable for the purposes of the present invention, as hereinafter described. For example, the prior art does not provide a variable-cycle engine that utilizes a rotating piston to selectively open and close the appropriate ports for the two-cycle and four-cycle modes, respectively.
SUMMARY OF THE PRESENT INVENTION
A primary object of the present invention is to provide an engine that can switch back and forth between two-cycle and four-cycle operational modes as needed due to a piston tail that rides along a training block within the cylinder wall. As the piston travels vertically the piston tail is training within a recess in the training block thereby rotating the piston head incrementally and aligning various ports to perform their respective functions.
Another object of the present invention is to provide a variable-cycle engine with a trainable piston that is governed by a microprocessor that adjust cycling according to load requirements picked up by sensors.
Yet another object of the present invention is to provide a variable-cycle engine with a trainable piston that utilizes cylinder porting, piston ports, and scavenging ports in the cylinder wall to supply fuel to the combustion chamber.
Still yet another object of the present invention is to provide a ball and socket means for attaching the connecting rod to the piston head thereby enabling the piston head to rotate when training.
Yet another object of the present invention is to provide a multiple-cycle engine that is efficient to operate yet can increase power capacity when necessary.
Additional objects of the present invention will appear as the description proceeds.
The present invention overcomes the shortcomings of the prior art by providing an internal combustion engine that can maintain the low weight, simplicity, and high power output of a two-cycle engine and switch over to a four-cycle operation for lower emissions and greater fuel economy when under normal operating conditions, by means of a computer-operated trainable piston assembly.
The present invention provides the means to maintain the low weight, simplicity and high power output of the two-cycle engine while under load, and yet maintain the lower emissions and higher increased economic requirements of the four-cycle engine under normal operating conditions. A ported, scavenging piston is connected to the crankshaft by means of a connecting rod, which has a ball-shaped (male) configuration on the upper end and links into the piston socket (female), which allows for the required multi-positioning of the piston. The connecting rod is linked to the crankshaft by means of a free spinning bearing.
When not under load, or at low RPM, the engine shall run in the four-cycle mode, by means of the trainable piston, which will be positioned by means of a training block, which is located within the cylinder wall. The piston is aligned by the training block by a piston tail that slides within the training block. The training block is computer controlled for two and four-cycle modes.
While in the four stroke mode the piston starts out in the upper position and travels down within the cylinder, being trained by means of the piston tail following the training block. A fuel charge is drawn through the piston from the intake port runner located in the cylinder wall, and travels through the piston port to the adjacent four-cycle scavenging port runner, and on into the combustion chamber. The piston is then trained counter-clockwise 35° by means of the training block, and starts it's upward travel for the compression stroke.
At full compression the spark plug fires causing detonation of the fuel and the piston travels down for the power stroke. The piston is again trained counter-clockwise 35° by means of the training block, and starts it's upward travel for the exhaust-purging stroke.
For
Kamen Noah P.
Kroll Michael I.
LandOfFree
Multi-cycle trainable piston engine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-cycle trainable piston engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-cycle trainable piston engine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3206449