Aeronautics and astronautics – Spacecraft – Attitude control
Reexamination Certificate
2003-12-16
2004-12-07
Carone, Michael J. (Department: 3644)
Aeronautics and astronautics
Spacecraft
Attitude control
C244S158700
Reexamination Certificate
active
06827313
ABSTRACT:
BACKGROUND
This invention relates to a device, system and method for launching humans into space.
Early United States manned space flights in the Mercury Program involved a single person transported in a single crew module, commonly referred to as a crew cabin or capsule, into orbit by a single launch vehicle or rocket.
As United States manned space flight progressed, the Gemini Program developed a launch vehicle which could transport two people, within the single capsule, into Earth orbit via a single launch vehicle.
The Apollo Program followed the Gemini Program. The Apollo crew module could transport three people, with one launch vehicle, into orbit. To provide for a lunar landing, the Apollo launch vehicle also transported the unmanned Lunar Module (LM) into orbit along with the Apollo capsule. Although the LM was capable of manned space flight, after it was placed in space, only the Apollo crew module could be used to transport people during the launch LM and capsule combinations were used in cooperation for manned lunar landings. However, only the Apollo capsule was capable of returning the crew members to the Earth.
The Apollo Program was followed by the Space Shuttle Program. The Space Shuttle's launch vehicle included boosters, an external fuel tank, and rocket engines (to receive propellant from the external propellant tank) on the Orbiter. A portion of the Orbiter is used as the crew cabin. As in the previous space programs, the Shuttle provides one launch vehicle for leaving the Earth and transporting one crew module (the Orbiter) into Earth orbit with one crew module (the same Orbiter) returning to the Earth.
Russia and recently China have launched human beings into space. All of the Russian launches have been one rocket launch vehicle and a single manned capsule carrying from one to three passengers. The first Chinese human launch was also one person in one crew cabin on one launch vehicle.
One of the remaining challenges in human space flight is to have a reliable system, device and/or method to provide for the launch of multiple crewed modules into orbit. A related challenge in space flight is to have a highly reliable and economical system, method or device for launching people and/or transportable payloads into orbit.
SUMMARY
A novel system provides for reliably launching human beings into orbit. A single launch vehicle can transport multiple crew modules or combinations of crew modules and payloads into orbit.
This system provides multiple crew modules per single launch vehicle. This is in contrast to the prior systems where there is only one crew module and one launch vehicle.
During a launch two or more crew modules are carried by a single launch vehicle. Each crew module is independent of the other and can carry a crew of one or more persons. Each crew module is capable of returning to Earth, with a crew, independently of the other crew modules.
The number of crew modules carried by the launch vehicle may be reconfigurable. The number and amount of crew module plus payload carried by the launch vehicle may also be reconfigurable. Launch systems and vehicles carrying multiple crew modules are described below. The below description are not intended to be an exhaustive list, nor to act as a limitation, of the possible configurations of the crew modules to launch vehicle of the method and/or system described within.
In some embodiments, the crew modules can have parachute recovery systems for safe crew survival on land or in the water. Various configurations of crew module placement on the launch vehicle are shown in the accompanying figures and described in the application. Various configurations as to the number and type of crew modules are also shown in the accompanying figures and described in the application. The crew modules once placed in orbit may also be referred to as space vehicles. A “pod” transporting payloads and/or crew modules into orbit may also be referred to as a space vehicle. Orbit as used herein refers to both low-Earth orbit and beyond into high Earth orbits.
In some embodiments the crew modules are transported into orbit within one or more detachable pods connected to the launch vehicle. Pods can be radially mounted around the circumference of the launch vehicle's propellant tank.
In other embodiments at least one of the crew modules can be directly attached to the propellant tank without a pod.
In some embodiments at least one of the crew modules is transported into orbit in-line with the main rocket. The crew module(s) may be affixed directly in front of the nose area, or may be placed in a holding bay or compartment either affixed to a portion of the launch vehicle, or formed as part of the nose area above the launch vehicle. The nose area above the main rocket may also form a detachable nose-pod for transporting crew modules within compartments or holding bays therein. Appropriate ejection and safety systems are created in the event of the need for emergency separation during launch. Modules are affixed to the launch vehicle to separate at different angles from one another to avoid collisions.
In some embodiments at least one of the crew modules is transported into orbit in-line and ahead of the launch vehicle propellant tank. The crew module(s) may be affixed directly in front of the propellant tank, or may be placed in a holding bay or compartment either affixed to a portion of the propellant tank, or formed as part of the nose area above the propellant tank. The nose area above the propellant tank may also form a detachable nose-pod for transporting crew modules within compartments or holding bays therein. Appropriate ejection and safety systems are created in the event of the need for emergency separation during launch. Modules are affixed to the launch vehicle to separate at different angles from one another to avoid collisions.
In yet other embodiments the crew modules are transported within both detachable pods and compartments or holding bays.
The pods may simply release the crew modules at the appropriate location while the pods remain attached to the launch vehicle, or the pods may be “ejectable” from the launch vehicle. In some embodiments the pods are without propulsion and the crew modules separate from the pods to continue flight separately.
In some embodiments a crew module can have its own rocket or other propulsion system. Once separated from the pod, a crew module with its own propulsion system can proceed on its own. Alternatively, the pod may be equipped with an independent propulsion system to transport either the pod with payload or at least a portion of the payload (without pod) to and/or from a separate location. A crew module can be used to transport payload and crew to and/or from a space station or other orbiting platform, site or structure.
In another form, crew modules could be mounted on a space shuttle-type launch vehicle which can be adapted for this use by relocating and connecting engines, such as those that are on the Shuttle Orbiter, to the center propellant tank.
Because of the performance of the launch vehicle described herein, there may be considerable cargo capability beyond that required to transport the crew modules so. Accordingly, a large payload, which may be as large as about 60,000 pounds, could be launched along with crew modules to the International Space Station.
In some instances empty crew modules and/or crew containing crew modules can be launched. Empty crew modules can be for use at a space station or can serve as lifeboats.
A next-generation Orbiter may be derived from the invention herein. A Space Shuttle-type Orbiter can be constructed with a crew module on a nose portion which can detach or eject and thus safely remove the crew module from the launch vehicle. The nose crew module would be a separable integrated part. Additional crew modules, both with and without crew, may be transported in a cargo hold.
In some embodiments of the launch vehicle and system, the launch vehicle is reconfigurable whereby standardized modular components, such as crew modules, pods an
Berman, Esq. Charles
Greenberg & Traurig, LLP
Holzen Stephen A
Krietzman, Esq. Mark
LandOfFree
Multi-crew modules for space flight does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-crew modules for space flight, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-crew modules for space flight will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3313391