Multi-core BSCCO high-temperature superconductor

Superconductor technology: apparatus – material – process – High temperature devices – systems – apparatus – com- ponents,... – Superconducting wire – tape – cable – or fiber – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C505S238000, C505S813000, C174S125100

Reexamination Certificate

active

06418331

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention resides in a multi-core BSCCO high-temperature superconductor including silver coated superconductor filaments which are separated from each other by a resistive material layer forming a resistive barrier.
Prototypes of high temperature superconductors in wire or flat cable form are being tested as high power transmission cables, in transformers and in energy storage devices. The operating current of these components, which are part of the electrical power supply net, is an AC current which has certain consequences for the requirements for the current conductor. AC current operations result in specific AC current losses, hysteresis losses and eddy current losses in the normally conductive enveloping material of the superconductor and also in coupling losses between the superconductive cores.
In order to reduce eddy current losses and particularly coupling losses, the material disposed between the superconductive cores must have an as high as possible electric resistance. The necessary use of silver or silver alloys provides for only limited possibilities of increasing the resistance by using a special silver alloy. At most, a factor in one order of size has been found possible at an operating temperature of 77° K. And this has the disadvantages that the alloy components must consist partially of expensive noble metals such as palladium, which is a major disadvantage for a commercial economical utilization. If, on the other hand, for example, AgMg or AgCu are used, those alloys cause a disadvantageous chemical reaction with the superconductor by solid material diffusion.
Another essential aspect is the thermal stabilization of the conductor which is characterized by the pure silver coating and which is detrimentally affected by an increase of the material resistance.
Consequently, a conductor structure is needed which, on one hand, offers in contact with the super conductor core, the high stabilization effect of the silver and, on the other hand, increases the resistance between two superconductive cores. This is achieved by a more complex conductor structure in which the silver coating of the individual conductors of the multicore conductor are separated by a resistive material layer that is a so-called resistive barrier.
A solution is presented in “Reduction of AC Losses in Bi 2223 Tapes by Oxide Barriers”, Y. Huang et al., which was accepted for publication in Proc. EUCAS Conference, Jun. 30-Jul. 3, 1997. Eindhoven, Netherlands. The barrier material introduced herein into the conductor structure is BaZrO
4
, which is also installed as a powder coating during the bundling process (assembly) into the conductor structure. This oxideceramic structure is relatively hard, which obviously distorts somewhat the geometry of the conductor during deformation. The relatively low transport current densities indicate that the AC current losses of the conductors indicate a partial success of such a barrier in the effectiveness of increasing the electrical transverse resistance. Based on the dependency of the transverse resistance on the barrier layer thickness, it is shown that a substantial residual conductivity remains which cannot be eliminated.
It is therefore the object of the present invention to provide a multi-core high temperature superconductor with silver matrix which has low AC current losses, that is, which has a high electrical resistance between its superconductor filaments (transverse resistance) without any negative effects on other technical properties of the superconductor.
SUMMARY OF THE INVENTION
In a multi-core-BSCCO high-temperature superconductor comprising a superconductor structure disposed in a silver enclosure, silver-enveloped superconductor filaments including a superconductive material having a metal component, and a resistive material layer disposed around the superconductor filaments and separating the superconductor filaments from each other, the resistive material layer consists of a carbonate having a metal component which is identical to a metal component included in the superconductor material.
The barrier is subject to high temperature requirements: It must be chemically inert even during annealing of the superconductor at a temperature of 810-840° C. and for an annealing period of about 100 hours while it should be passive to a reaction with the surrounding silver and to diffusion through the silver so that the superconductor is not contaminated and the barrier material structure remains physically intact. Also, the barrier material needs to be permeable to oxygen at least to the degree as it is permeable for silver. It is furthermore a basic requirement that the barrier material can be deposited in the areas between the filaments when the individual conductors are bundled into an outer sleeve tube and remains effective after the re-forming procedure of the conductor while maintaining its geometry. Not many materials fulfill these conditions so that the selection is quite limited.
Electrically non-conductive strontium carbonate SrCO
3
, also known under its mineral name strontianite has been selected as barrier material. This material is a component of the powder mixture of the pre-stage of the superconductor before it is subjected to the calcining annealing process wherein the carbonate is decomposed and the carbon generally escapes in the form of CO
2
.
This barrier material has the following important advantages: The metallic component is also contained in the superconductor. If some of this barrier component diffuses into the superconductor, the superconductor will not essentially be affected thereby.
A necessary condition is also a high chemical stability with respect to decomposition at high temperatures. If this barrier component diffuses to the superconductor, the superconductor will not or only slightly be affected thereby.
The barrier material also needs to have a high chemical stability; even at high temperatures, it should not be subjected to decomposition. For a chemical equilibrium with respect to oxygen, the oxygen partial pressures are sufficient which develop at the barrier material because of the oxygen permeability of the silver. As a result, the annealing atmosphere of the superconductor contains 8% oxygen or more and the permeability of the silver with respect to oxygen ensures that the partial pressure for the stabilization at the barrier is present at the location of the barrier. The stability of the molecule prevents a release and the diffusion of the molecule components.
Other advantages are in the area of economics since the material is commercially available in the necessary purity and granularity and, because of its stability, it is considered to be free of health hazards and environmentally compatible.
This barrier material is basically suitable for both BSCCO superconductors presently in use, that is, the Bi(2212)/Ag wire (chemically (Bi or Pb)
2
Sr
2
Ca
1
Cu
2
O
x
each with known +/−deviations of the components) or strand with the critical temperature of 85 K (used at T=4.2−about 30 K) and Bi(2223)/Ag-strand (chemically (Bi or Pb)
2
Sr
2
CaCu
2
O
x
each with known +/−deviations of the components) with a critical temperature of 110 K (used T=4.2 to 77° K.).
The use of a carbonate in contrast to a non-noble metal or an oxide is advantageous. The introduction of carbon into the conductor structure, which is in principle very detrimental, is neutralized by the extremely high stability of the material. It is however advantageous that the metallic component (Sr) of the barrier is identical to a component (Sr) of the superconductor so that no contamination of the superconductor by a foreign metal can occur.
The adaptation of the hardness of the barrier material to the silver is clearly better, since in contrast to the concentration of the material as presented in Huong et al., in several areas of the conductor cross-section, an advantageous tendency to a homogeneous distribution of the material can be observed. This tendency to form a cont

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-core BSCCO high-temperature superconductor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-core BSCCO high-temperature superconductor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-core BSCCO high-temperature superconductor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837694

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.