Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2001-12-27
2004-09-07
Cuneo, Kamand (Department: 2827)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S777000, C361S782000
Reexamination Certificate
active
06788546
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention presented here relates to a multi-chip-module with a base carrier, on which at least in some areas signal conductor tracks and signal contact surfaces are arranged in a single layer, and with at least one semiconductor component operating in the signal range connected with signal conductor tracks and signal contact surfaces.
2. Description of Related Art
Multi-chip-modules (MCM) in prior art serve for the highly integrated arrangement of semiconductor components operated in the signal range (i.e., computer components, memory components, I-O components, etc.). MCMs of this type comprise very fine structures of conductor tracks and contact surfaces, wherein semiconductor components mostly present in the form of unhoused chips are connected with the contact surfaces. Several of these semiconductor components are arranged on a common base carrier. Within the technology, a series of differing designs of such MCMs exist, mentioned as examples shall be solely the EP 0871222 A2, WO 97/22138, WO 97/20273 and EP 0856888 A2. Multi-chip-modules of this type, for example, are arranged on printed circuit boards and contacted through corresponding supply lines of the printed circuit board. Common to all known MCMs, however, is that they exclusively relate to the combination of digital and/or analogue semiconductor components, which are operated with electric powers in the signal range and which, as a rule, are utilised for the outputting of control signals. The conductor tracks and contact surfaces have a small cross section and can be arranged in a single layer or multiple layers on a suitable carrier material, so that, depending on the case in question, a structure in the sense of an MCM-L, an MCM-C or an MCM-D is present. These types, which are designated in such a manner in the specialist literature, differ from one another with respect to the carrier material and the lateral density of the electrically conductive structure. With these conductor tracks and contact surfaces of small cross section, the desired signal semiconductor components, which can be present as unhoused chips or as “chip-packed devices” or as SMD component, etc., are capable of being contacted. MCMs of this type are also utilised for controlling of semiconductor components with electric powers from a few Watts to some kilowatts, in that electric control signals with a low power are applied to corresponding inputs of these semiconductor components. In the fields of the controlled electric power supply of medium to high power, e.g., in the case of small electric motors, electro-pneumatic modules, motors for machine tools, motors for automobiles and right through to locomotive motors, no complete electric isolation of signal circuit and power circuit has to be present.
In other fields of application, such as in telecommunications, a strict electric isolation of the driving primary circuit from the secondary circuit conducting the electric power is demanded. In such a case, electronic components, such as switching relays, reed relays, etc., are employed which, on the basis of more recent developments, are becoming smaller and smaller in their dimensions.
In particular in the field of small automatic units (small robots, automatic assembly units, etc.), but also, however, in the field of telecommunications, it has proven to be a problem that the electronic structures necessary for the operation of the unit, still have a disruptively large volume and, on the other hand, the operational reliability is limited by the terminals, plugs and other devices for creating electric contact between two structurally independent components.
SUMMARY OF THE INVENTION
The present invention is therefore directed toward making available a highly integrated circuit layout in the case of an MCM with a base carrier, on which at least in some areas signal conductor tracks and signal contact surfaces are arranged in a single layer, and with at least one semiconductor component operating in the signal range connected with signal conductor tracks and signal contact surfaces.
This objective is achieved in the case of a multi-chip-module by the fact that, on the base carrier, at least in some areas power conductor tracks and power contact surfaces arranged in a single-layer are provided, at least one power electronics component operating in the power range is provided, which is connected with the at least one power conductor track, at least one power contact surface and at least one signal conductor track, and that the power conductor tracks have a larger cross section that the signal conductor tracks at least on the basis of greater thickness dimensions. The comparison of cross sections preferably shall not refer to the overall cross section of all conductor tracks, but shall be refer to the individual cross section of the respective conductor track.
It is known from the printed circuit board technology to equip a base carrier with a conductive layer and, subsequently by means of photo-lithography, to create a conductor track structure on this carrier, wherein conductors of differing cross sections can be produced by differing conductor track widths. However, this process cannot be transferred to the production of very much smaller and, for this reason, very much more finely structured MCMs. Because of the excessive widening of conductor tracks for the purpose of obtaining a suitable cross section, the high integration on an MCM would not be implementable.
In contrast to this, in accordance with the invention it is proposed to arrange power electronics components, which in the meantime are also available in small format, which are operated with a much higher power than the signal semiconductor components, on one and the same base carrier as the signal control system. This is implemented by conductor tracks with a greater thickness than the respectively thinner signal conductor tracks. By means of this, the power conductor tracks can also be arranged very close together, as a result of which high integration can take place on the common base carrier. In addition, the integration of driving electronics and power electronics on an MCM provides the opportunity to offer the users “intelligent power electronics components”. Therefore on the same carrier in addition to the conductors with a small cross section, conductors and contact surfaces with a large cross section are present, by means of which the required power electronics components (power semiconductors, relays, etc.) can be contacted. From the zone with the conductors of a small cross section, special conductors lead into the zone with conductors with a large cross section, which are able to transmit the corresponding control signals between the signal semiconductor and the power semiconductors. With this, in the smallest possible space and without any connecting elements susceptible to malfunction, a driving of the power electronics components with signal semiconductors is implemented.
Furthermore, there is the possibility that the at least one signal conductor track leading to a power electronics component essentially seamlessly verges into a power conductor track and/or power contact surface. If the same materials are utilised for the power electronic conductor tracks and the signal conductor tracks, then on the basis of suitable manufacturing methods a tight bond of these conductor tracks is produced, which is superior to all other contacting methods. The control signal therefore can be transmitted to the power electronics components with the utmost precision and without any interference, Connecting elements susceptible to malfunction, such as solder points, are therefore superfluous.
Methods mastered up until now have shown that the ratio of the height of a power conductor track and/or power contact surfaces to the height of a signal conductor track and/or signal contact surface is situated within the range of 2 to 300, preferably in a ratio of 20 to 180. On the basis of such a significant difference it is possible to put mu
Staufert Gerhard
Steiert Philippe
Cuneo Kamand
Dinh Tuan
Elmicron AG
Rankin, Hill Porter & Clark LLP
LandOfFree
Multi-chip module does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-chip module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-chip module will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3240641