Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
2001-07-12
2003-09-02
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S323000
Reexamination Certificate
active
06615065
ABSTRACT:
This invention relates generally to in vivo spectrophotometric examination and monitoring of selected blood metabolites or constituents in human and/or other living subjects, e.g., medical patients, and more particularly to spectrophotometric oximetry, by transmitting selected wavelengths (spectra) of light into a given area of the test subject, receiving the resulting light as it leaves the subject at predetermined locations, and analyzing the received light to determine the desired constituent data based on the spectral absorption which has occurred, from which metabolic information such as blood oxygen saturation may be computed for the particular volume of tissue through which the light spectra have passed.
A considerable amount of scientific data and writings, as well as prior patents, now exist which is/are based on research and clinical studies done in the above-noted area of investigation, validating the underlying technology and describing or commenting on various attributes and proposed or actual applications of such technology. One such application and field of use is the widespread clinical usage of pulse oximeters as of the present point in time, which typically utilize sensors applied to body extremities such as fingers, toes, earlobes, etc., where arterial vasculature is in close proximity, from which arterial hemoglobin oxygenation may be determined non-invasively. A further and important extension of such technology is disclosed and discussed in U.S. Pat. No. 5,902,235, which is related to and commonly owned with the present application and directed to a non-invasive spectrophotometric cerebral oximeter, by which blood oxygen saturation in the brain may be non-invasively determined through the use of an optical sensor having light emitters and detectors that is applied to the forehead of the patient. Earlier patents commonly owned with the '235 patent and the present one pertaining to various attributes of and applications for the underlying technology include U.S. Pat. Nos. 5,139,025; 5,217,013; 5,465,714; 5,482,034; and 5,584,296.
The cerebral oximeter of the aforementioned '235 patent has proved to be an effective and highly desirable clinical instrument, since it provides uniquely important medical information with respect to brain condition (hemoglobin oxygen saturation within the brain, which is directly indicative of the single most basic and important life parameter, i.e. brain vitality). This information was not previously available, despite its great importance, since there really is no detectable arterial pulse within brain tissue itself with respect to which pulse oximetry could be utilized even if it could be effectively utilized in such an interior location (which is very doubtful), and this determination therefore requires a substantially different kind of apparatus and determination analysis. In addition, there are a number of uniquely complicating factors, including the fact that there is both arterial and venous vasculature present in the skin and underlying tissue through which the examining light spectra must pass during both entry to and exit from the brain, and this would distort and/or obscure the brain examination data if excluded in some way. Furthermore, the overall blood supply within the skull and the brain itself consists of a composite of arterial, venous, and capillary blood, as well as some pooled blood, and each of these are differently oxygenated. In addition, the absorption and scatter effects on the examination light spectra are much greater in the brain and its environment than in ordinary tissue, and this tends to result in extremely low-level electrical signal outputs from the detectors for analysis, producing difficult signal-to-noise problems.
Notwithstanding these and other such problems, the cerebral oximeter embodying the technology of the aforementioned issued patents (now available commercially from Somanetics Corporation, of Troy, Mich.) has provided a new type of clinical instrument by which new information has been gained relative to the operation and functioning of the human brain, particularly during surgical procedures and/or injury or trauma, and this has yielded greater insight into the functioning and state of the brain during such conditions. This insight and knowledge has greatly assisted surgeons performing such relatively extreme procedures as carotid endarterectomy, brain surgery, and other complex procedures, including open-heart surgery, etc. and has led to a greater understanding and awareness of conditions and effects attributable to the hemispheric structure of the human brain, including the functional inter-relationship of the two cerebral hemispheres, which are subtly interconnected from the standpoint of blood perfusion as well as that of electrical impulses and impulse transfer.
BRIEF SUMMARY OF INVENTION
The present invention results from the new insights into and increased understanding of the human brain referred to in the preceding paragraph, and provides a methodology and apparatus for separately (and preferably simultaneously) sensing and quantitatively determining brain oxygenation at a plurality of specifically different locations or regions of the brain, particularly during surgical or other such traumatic conditions, and visually displaying such determinations in a directly comparative manner. In a larger sense, the invention may also be used to monitor oxygenation (or other such metabolite concentrations or parameters) in other organs or at other body locations, where mere arterial pulse oximetry is a far too general and imprecise examination technique.
Further, and of considerable moment, the invention provides a method and apparatus for making and displaying determinations of internal metabolic substance, as referred to in the preceding paragraph, at a plurality of particular and differing sites, and doing so on a substantially simultaneous and continuing basis, as well as displaying the determinations for each such site in a directly comparative manner, for immediate assessment by the surgeon or other attending clinician, on a real-time basis, for direct support and guidance during surgery or other such course of treatment.
In a more particular sense, the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors. In a more particular sense, the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors to the test subject at each of a corresponding plurality of testing sites, coupling each such sensor to a control and processing station, operating each such sensor to spectrophotometrically irradiate a particular region within the test subject associated with that sensor, detecting and receiving the light energy resulting from such spectrophotometric irradiation for each such region, conveying signals corresponding to the light energy so received to the control and processing station, analyzing the conveyed signals to determine preselected blood metabolite data, and displaying the data so obtained from each of a plurality of such testing sites and for each of a plurality of such regions, in a region-comparative manner.
The foregoing principal aspects and features of the invention will become better understood upon review of the ensuing specification and the attached drawings, describing and illustrating preferred embodiments of the invention.
REFERENCES:
patent: 4570638 (1986-02-01), Stoddart et al.
patent: 4725147 (1988-02-01), Stoddart
patent: 4768516 (1988-09-01), Stoddart et al.
patent: 4817623 (1989-04-01), Stodda
Barrett Bruce J.
Gonopolsky Oleg
Scheuing Richard S.
Price Heneveld Cooper DeWitt & Litton
Somanetics Corporation
Winakur Eric F.
LandOfFree
Multi-channel non-invasive tissue oximeter does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-channel non-invasive tissue oximeter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-channel non-invasive tissue oximeter will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3085355