Multi-carrier transmission system utilizing channels of...

Pulse or digital communications – Systems using alternating or pulsating current – Plural channels for transmission of a single pulse train

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S219000, C329S357000

Reexamination Certificate

active

06252909

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to data transmission systems, and more particularly, to an improved multi-carrier transmission system.
BACKGROUND OF THE INVENTION
In prior art multi-carrier systems, a communication path having a fixed bandwidth is divided into a number of sub-bands having different frequencies. The width of the sub-bands is chosen to be the same for all sub-bands and small enough to allow the distortion in each sub-band to be modeled by a single attenuation and phase shift for the band. If the noise level in each band is known, the volume of data sent in each band may be maximized for any given bit error rate by choosing a symbol set for each channel having the maximum number of symbols consistent with the available signal-to-noise ratio of the channel. By using each sub-band at its maximum capacity, the amount of data that can be transmitted in the communication path for a given error rate is maximized.
For example, consider a system in which one of the sub-channels has a signal-to-noise ratio which allows at least 16 digital levels to be distinguished from one another with an acceptable error rate. In this case, a symbol set having 16 possible signal values is chosen. If the incoming data stream is binary, each consecutive group of 4 bits is used to compute the corresponding symbol value which is then sent on the communication channel in the sub-band in question.
In digitally implemented multi-carrier systems, the actual synthesis of the signal representing the sum of the various modulated carriers is carried out via a mathematical transformation that generates a sequence of numbers that represents the amplitude of the signal as function of time. For example, a sum signal may be generated by applying an inverse Fourier transformation to a data vector generated from the symbols to be transmitted in the next time interval. Similarly, the symbols are recovered at the receiver using the corresponding inverse transformation.
The computational workload inherent in synthesizing and analyzing the multi-carrier signal is related to the number of sub-bands. For example, if Fourier transforms are utilized, the workload is of order NlogN where N is the number of sub-bands. Similar relationships exist for other transforms. Hence, it is advantageous to minimize the number of sub-bands.
There are two factors that determine the number of sub-bands in prior art systems. First, the prior art systems utilize a uniform bandwidth. Hence, the number of sub-bands is at least as great as the total bandwidth available for transmission divided by the bandwidth of the smallest sub-band. The size of the smallest sub-band is determined by need to characterize each channel by a single attenuation and phase shift. Thus, the sub-band having the most rapidly varying distortion sets the number of sub-bands and the computational workload in the case in which white noise is the primary contributor to the signal-to-noise ratio.
In systems in which the major source of interference is narrow band interference, the minimum sub-band is set with reference to the narrowest sub-band that must be removed from the communication channel to avoid the interference. Consider a communication channel consisting of a twisted pair of wires which is operated at a total communication band which overlaps with the AM broadcast band in frequency. Because of the imperfect shielding of the wires, interference from strong radio stations will be picked up by the twisted pair. Hence, the sub-bands that correspond to these radio signals are not usable. In this case, prior art systems break the communication band into a series of uniform sub-bands in which certain sub-bands are not used. Ideally, the sub-bands are sufficiently narrow that only the portion of the spectrum that is blocked by a radio signal is lost when a sub-band is marked as being unusable.
Broadly, it is the object of the present invention to provide an improved multi-carrier transmission system.
It is a further object of the present invention to provide a multi-carrier transmission system having a lower computational workload than imposed by systems having bands of equal band-width.
These and other objects of the present invention will become apparent to those skilled in the art from the following detailed description of the invention and the accompanying drawings.
SUMMARY OF THE INVENTION
The present invention is a communication system for sending a sequence of symbols on a communication link. The system includes a transmitter for placing information indicative of the sequence of symbols on the communication link and a receiver for receiving the information placed on the communication link by the transmitter. The transmitter includes a clock for defining successive frames, each of the frames including M time intervals, where M is an integer greater than 1. A modulator modulates each of the M carrier signals with a signal related to the value of one of the symbols thereby generating a modulated carrier signal corresponding to each of the carrier signals. The modulated carriers are combined into a sum signal which is transmitted on the communication link. The carrier signals include first and second carriers, the first carrier having a different bandwidth than the second carrier. In one embodiment, the modulator includes a tree-structured array of filter banks having M leaf nodes, each of the values related to the symbols forming an input to a corresponding one of the leaf nodes. Each of the nodes includes one of the filter banks. Similarly, the receiver can be constructed of a tree-structured array of sub-band filter banks for converting M time-domain samples received on the communication link to M symbol values.


REFERENCES:
patent: 5048054 (1991-09-01), Eyuboglu et al.
patent: 5170413 (1992-12-01), Hess et al.
patent: 5243629 (1993-09-01), Wei
patent: 5285474 (1994-02-01), Chow et al.
patent: 5479447 (1995-12-01), Chow et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-carrier transmission system utilizing channels of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-carrier transmission system utilizing channels of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-carrier transmission system utilizing channels of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2539552

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.