Semiconductor device manufacturing: process – Having magnetic or ferroelectric component
Reexamination Certificate
2001-08-30
2002-11-26
Christianson, Keith (Department: 2813)
Semiconductor device manufacturing: process
Having magnetic or ferroelectric component
C257S295000
Reexamination Certificate
active
06485989
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to semiconductor processing technology and, in particular, concerns a magnetoresistive random access memory (MRAM) device and fabrication process for an element.
2. Description of the Related Art
MRAM is a developing technology that offers the advantages of non-volatility and high density fabrication. MRAM structures employ the spin property of electrons within layers of metallic-based magnetic material that have a physical property known as magnetoresistance (MR) to read the memory storage logic states. Binary logic states typically require sensing of a resistance differential to distinguish between “on” and “off” states. If a particular material has a high resistance, the ability of electrons to flow through the material is inhibited and, conversely, a low resistive material tends to allow a higher degree of current flow. MRAM structures take advantage of this resistivity concept by manipulating the alignment of magnetic fields within metallic layers of material to increase or decrease the resistance.
Moreover, current flow through a conductive trace induces a magnetic field. In the presence of an orthogonal external magnetic field, the spin direction of a stationary MR electron may be altered in one of two directions; either “upspin”, parallel to the magnetic field or “downspin”, antiparallel to the magnetic field. Thus, by the application of a magnetic field, the resistivity of a magnetoresistive material can be altered.
MRAM devices typically consist of a pinned (spin stationary) layer and a sense (spin programmable) layer with a tunneling layer interposed between the pinned layer and the sense layer. Typically, the magnetoresistive structure has electrodes that are positioned adjacent the sense layer and also adjacent the pinned layer such that the application of a current to the pinned and sense layer can change the magnetoresistive qualities of the MRAM element thereby altering its resistance. In this way, logic states can be programmed into an MRAM element and, by subsequent reading of the resistance of the MRAM element via the conductive traces, the logic state can be subsequently retrieved.
MRAM structures are typically formed using known patterning and etching techniques used to manufacture other semiconductor memory devices, such as DRAMs. For example, the typical MRAM element or array is generally formed on a substrate. Sequential layers of magnetic material are deposited on the substrate and are then patterned and etched so as to define the MRAM element. For example, in one common MRAM structure, a magnetic pinned layer is deposited globally over a region of the substrate followed by the global deposition of the tunneling layer and then followed by the global deposition of the sense layer. Patterning and etching or ion milling techniques are then used to selectively remove portions of the globally deposited layers so as to define an MRAM element.
Several difficulties occur during the manufacturing process which reduce the yield of usable MRAM elements. For example, the sense layer and tunneling layer are often patterned prior to the patterning of the underlying pinned layer. During subsequent patterning of the underlying pinned layer, the sidewalls of the patterned sense layer is exposed and material from the underlying pinned layer can sputter up during the pinned layer patterning thereby resulting in the two magnetic layers being shorted together. With the two magnetic layers shorted together, the MRAM element is typically unable to record two separate binary states and be used for memory storage.
This particular problem becomes more exacerbated when MRAM devices of higher density are being made. In particular, higher density devices typically have much smaller features, thereby resulting in the pinned layer and the sense layer being positioned more closely together resulting in shorted MRAM elements being more likely.
A further difficulty with the typical MRAM fabrication process is that once the sense layer and tunneling layer have been patterned, it is often very difficult to pattern the underlying pinned layer to have dimensions other than the previously patterned sense layer. Consequently, in the typical MRAM element, the outer lateral edges of the patterned sense layer and the underlying patterned pinned layer are generally located proximate to each other. As is understood, the magnetic field of the underlying pinned layer is substantially stronger than the magnetic field of the sense layer. Magnetic flux emanating from the pinned layer can alter or otherwise effect the magnetic field of the sense layer. Hence, the magnetic field of the pinned layer can result in variations in the magnetic field of the sense layer other than what has been programmed. Consequently, the data that is stored in the MRAM element can then be inadvertently altered or changed as a result of magnetic coupling.
It is also understood that magnetic flux is more concentrated at the lateral edges of the magnetic pinned layer. Consequently, when the lateral edges of the pinned layer are location proximate the lateral edges of the sense layer, the potential of the pinned layer adversely affecting the sense layer is increased. As MRAM elements are being made increasingly smaller, the proximity of the edges to each other results in an increase in magnetic coupling between the pinned layer and the sense layer.
From the foregoing, it will be appreciated that there is a need for a process of fabricating MRAM elements such that the yield of the MRAM element can be improved and also such that magnetic coupling between the various layers of the MRAM element can be reduced.
SUMMARY OF THE INVENTION
The aforementioned needs are satisfied by the present invention which, in one aspect, comprises a process for fabricating MRAM element. In this aspect, the process comprises globally depositing a first magnetic layer on a region of a substrate, globally depositing a tunnel layer on the first magnetic layer, and globally depositing a second magnetic layer on the tunneling layer. The process further comprises patterning the second magnetic layer so as to define a patterned second magnetic layer of the MRAM element. The process then comprises forming an isolation structure around the lateral edges of the patterned second magnetic layer. Subsequently, the process comprises patterning the underlying global first magnetic layer so as to define a patterned second magnetic layer. In one particular implementation the outer lateral edges of the of the patterned first magnetic layer coincide with the outer lateral edges of the isolation element such that the outer lateral edges of the patterned first magnetic layer are displaced from the outer lateral edges of the second magnetic layer. In one implementation, the first magnetic layer comprises a pinned layer and the second magnetic layer comprises a sense layer.
By laterally displacing the outer lateral edges of the patterned pinned layer from the outer lateral edges of the sense layer, coupling between the pinned and sense layers of the MRAM element can be reduced. Moreover, the presence of the isolation element during patterning of the pinned layer, reduces the likelihood that the pinned layer and the sense layer will become shorted during the patterning process.
In another aspect, the present invention comprises an MRAM element having a substrate, a first magnetic layer of a first lateral dimension formed on the substrate, a tunnel layer positioned on the first magnetic layer; and a second magnetic layer positioned on the tunneling layer having a second lateral dimension that is less than the first lateral dimension such that the lateral edges of the first magnetic layer and the second magnetic layer are offset from each other. In one particular embodiment, the MRAM element further comprises an isolation layer that is positioned about the outer lateral edges of the second magnetic layer so as to inhibit contact between the first magnetic first magnetic layer and the second ma
Christianson Keith
Knobbe Martens Olson & Bear LLP
Micro)n Technology, Inc.
Thompson Craig
LandOfFree
MRAM sense layer isolation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with MRAM sense layer isolation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MRAM sense layer isolation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2926083