Moving surface exercise device

Exercise devices – Involving user translation or physical simulation thereof – Treadmill for foot travel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S051000

Reexamination Certificate

active

06409633

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention herein relates to an exercise device and more particularly to a treadmill commonly used for physical exercise and training.
2. Overview of Prior Art
The treadmill for use as a physical exercise device has evolved from the use of conveyors in industry. These systems are used to transport items from one place to another and are typically comprised of an endless belt that travels over front and rear pulleys, one of which is mechanically connected to a drive system such as an electric motor. Since the belt must be pliable to bend around the pulleys the space between the pulleys must be supported because the pliable belt would likely not be able to support the weight of the objects being transported thereon. As a solution what is commonly used is a plurality of rollers with their axes oriented parallel to the end pulleys. The rollers are free to support the weight of the object adding only a minimal amount of friction to the system.
Exercise treadmills necessitate supporting loads in excess of 2½ to 3 times the users body weight (Cavanagh and Lafortune) and (Nilsson and Thorstensson). The maximum foot contact with the running surface during running is around 54% (Kaliszer, et al) and given an estimate of 35 sq. in. of surface area of a runner's foot the resultant pressure is over 31 psi (214 KPa) for a 200 pound runner on a flat surface. If a runner is forced to run on a set of rollers this pressure could increase by 5 times or more. Though this load produces a pressure that is slightly less than 1% of the yield stress of bone (121 MPa) (Skalak and Chien), the stretch receptors in the skin detect discomfort. This pressure used in a in vivo model for compression response of skin (Dikstein and Hartzshtark) results in a deformation of 133 meters. Clearly far beyond the 2-4% seen in the linear region of stress-strain response of skin. The resultant helps to explain why we see potential for long term injury due to even seemingly small changes in running mechanics. Changes in how the runner's foot strikes or leaves the surface may cause problems (Chadbourne). Trying to run on a set of rollers could greatly alter running gait due to the body's response to the increased foot pressure.
The industry has adapted a minimally functional model for people to run on that has remained virtually unchanged for several decades. Traditional samples are seen in U.S. Pat. No. 5,542,892 to Buhler where a belt (14) is supported by a pad (46) which is supported by a flat and substantially rigid deck (48). The belt is an endless belt which is kept in tension by a front and rear drum pulley. A motor drives a pulley and the friction between the underside of the belt and the surface of the pulley allows the belt to move across the surface of the deck, which is the running surface. The pad assists in absorbing the impact of the user's foot on the running surface.
The obvious problem is the friction between the belt and the deck or pad. As previously calculated, a great deal of pressure is generated between these surfaces. Not only does this predispose the belt to wear but the system must maintain enough kinetic energy to pull the user's foot over the deck without it slowing. This would generate a “cogging” effect and greatly disrupt the user's running gait. The Buhler patent disclosure includes a antifriction or wax block (49) to try to reduce the coefficient of friction between these surfaces. The dichotomy is that the system requires a good deal of friction between the belt and the pulley but necessitates minimal friction between the belt and the deck.
A similar disclosure is made by Skowronski et al in U.S. Pat. No. 5,599,259. Here a rear front belt pulley (22) and a rear belt pulley (28) are chambered to assist in the tracking of the belt (20). The belt is supported by the deck (50) with additional structures to give the deck flex to help absorb the impact of running. The drive transmission (111) and motor (104) is shown to drive the rear pulley (28) in the large unit and the front pulley in the small unit.
This is one of the few disclosures that identify the advantage of rear pulley drive as it is associated with this type of device. Since the belt is pliable it can only transmit load effectively in tension not in compression, thus fewer fibers are stressed due to the tension requirement to pull the runner's foot caused by the friction between the belt and the deck when the rear pulley drives the belt rather than the front pulley. This is because the rear pulley is closer to the application of the load and therefore the frictional force. Smaller units cannot fit the motor between the upper and lower runs of the belt so the motor is placed in the front and the front pulley drives the belt.
Methods to overcome this friction problem have been addressed by several individuals. One such attempt is made by Schonenberger in U.S. Pat. No. 4,334,676 and also in U.S. Pat. No. 4,614,337. Here a movable surface treadmill is disclosed where the surface is comprised of a plurality of step or slat elements that are attached to an endless belt, the belt being driven by one of the front or rear pulleys. The slat elements are supported on the upper run by a series of support rollers that are supported by the frame of the unit. This creates an upper run that includes only rolling friction of the slats on the support rollers and not sliding friction between a belt and a deck.
The conception and application works well except other than the complexity of the device. The resultant is comprised of much of the existing components of a traditional treadmill while adding a combination of slats that are connected to the belt and an array of support rollers on each side of the slat members. The combination is a device that is not price competitive in the market place.
A specialty device is disclosed by Lepine et al., in U.S. Pat. No. 5,385,520, in the form of an ice skating treadmill. This device is similar to the previously disclosed in that it is comprised of a front and rear pulley which supports an endless belt, only the belt is covered with ridged plastic slats. The reinforced belt is supported on each side of the upper run by a set of roller supports. The combination does eliminate the sliding friction associated with a traditional treadmill, as does the previous disclosure but here as before the physical size is prohibitive to many applications, even if it was modified to be used for an individual on which to run. In addition, the traditional problems associated with belt tracking on the drum pulleys, the weight and cost of such a device would make it prohibitive.
A horse exerciser is disclosed by Pike in U.S. Pat. No. 4,361,115. This has parallels to the previously disclosed in that individual slats are secured to links of two parallel roller chains instead of a continuous belt. The front and rear drum pulleys are replaced by two pair of sprockets which guide and/or drive the combination. The upper run of the plurality of slats are supported by an arrangement of roller supports positioned along the sides of the upper run, as previously done. Tracking of the segmented belt is now extremely critical. If one side of the one bearing support which supports the sprocket combination drifts a slight amount the associated sprocket will not align with the chain links and jump the track. This not only would result in ceasing the operation of the device while in use, which could result in injury to the user, but as the motor continues to attempt to drive the unit, damage to the device would likely result. Since roller chain commonly stretches with normal use due to the wear on the pivoting components, and no idler function is employed the likelihood is great.
If the device was scaled down for human use this problem would be even more likely because as the sprocket size is decreased the size of the roller chain, the tooth depth also decreases, thus increasing the risk of disengagement. Also the labor intensive cost associated with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Moving surface exercise device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Moving surface exercise device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moving surface exercise device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.