Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1999-05-24
2002-02-26
Manuel, George (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
Reexamination Certificate
active
06351662
ABSTRACT:
BACKGROUND
This invention relates to instrument guidance for stereotactic surgery.
Stereotactic localization is a method for locating a target within a three-dimensional object. This method is used in the medical arts and sciences to locate a target in the human body, in particular in the brain or spine, for medical and surgical treatment. Stereotactic surgery has a history dating back to the turn of the century, when the Horsely-Clark Apparatus was described as a mechanical frame system in which an animal was immobilized. This frame system permitted reproducible targeting within the animal's brain for physiological experiments. This and similar technology found application in 1948 in the work of Wycis and Speigel. In their work, a frame was attached to a human skull. The frame permitted targeting of sites within the human brain for neurosurgical treatment. A detailed survey of the field of stereotactic surgery can be found in
Textbook of Stereotactic and Functional Neurosurgery
, P. L. Gildenberg and R. R. Tasker (eds.), McGraw-Hill, June 1997 (ISBN: 0070236046).
One approach to stereotactic surgery involves the following steps. Fiducial scanning markers are attached to the body in one of a variety of manners, including using an attachable frame or attaching the markers to the skin with an adhesive. A scan is then taken of a body, for example of the head, to produce a three-dimensional image of the body. Scanning can be done using a variety of techniques including CT, MRI, PET, and SPECT. Images of the fiducial scanning markers that are located around the body are then located in the three-dimensional image at fiducial image points. Points of interest, such as the location of a tumor, are located in the three-dimensional image with reference to these fiducial image points. The body and the image are registered by matching the locations of the scanning markers and the coordinates of the fiducial image points. In an approach to stereotactic brain surgery, a three-dimensional frame is screwed to the patient's skull prior to scanning the head. This frame serves as a mechanical reference mechanism that supports scanning fiducial markers at fiducial points around the body. The frame remains attached to the patient's skull from before scanning until after surgery is complete. Prior to surgery, a mechanical guide assembly is attached to the frame. The relative location in the image of the point of interest with respect to the fiducial image points is determined, and this relationship is used to adjust the mechanical guide assembly with respect to the fiducial points on the frame. Using the adjusted mechanical guide assembly, a surgical instrument is then guided to a location in the body that corresponds to the point of interest in the image.
In another form of stereotactic surgery, known generally as “image-guided” stereotactic surgery, rather than relying on mechanical adjustment of a guide assembly, visual feedback is provided to a surgeon by displaying a composite image formed from the scanned three-dimensional image and a synthesized image of a hand-held surgical instrument. The surgeon guides the hand-held instrument into the body using the visual feedback. In this form of surgery, a frame is attached to the patient and a scan is taken as described above. After scanning, the head and frame are secured in a fixed position, for example, fixed to an operating table. In order to display the image of the surgical instrument in a proper relationship to the scanned image, the position and orientation of the instrument is sensed using a localization apparatus that remains in a fixed position relative to the body. The localization apparatus can be coupled to the surgical instrument using an articulated mechanical arm on which the surgical instrument is attached. Sensors in the joints of the arm provide signals that are used to determine the location and orientation of the instrument relative to a fixed base of the mechanical arm. Some more recent systems do not use mechanical coupling between the surgical instrument and the localization apparatus and instead rely on remote sensing of small localized energy emitters (e.g., sources or transducers of energy) fixed to the instrument. For example, a camera array is used to locate light-emitting diodes (LEDs) that are attached to the instrument. The locations of the LED images in the camera images are used to determine the three-dimensional physical locations of the LEDs relative to the camera array. The locations of multiple LEDs attached to the instrument are then used to determine the location and orientation of the instrument. Another example of remote sensing uses sound generators and a microphone array and relies on the relative time of arrival of acoustical signals to determine the three-dimensional locations of the sound generators.
Before a synthesized image of the instrument can be combined with the scanned image in a proper relationship, some form of registration is required. For example, the tip of the surgical instrument can be placed at each of several fiducial markers for which corresponding images have been located in the three-dimensional scanned image. Registration of the synthesized image of the instrument and the scanned image can thereby be established.
In a variant of image-guided stereotactic surgery, generally known as “dynamic referencing,” the head and frame are secured in a fixed position, as in the image-guided approach. However, unlike other image-guided techniques, the sensors (e.g., cameras) of the localization apparatus are not at a fixed location. In order to compensate for the motion of the sensors, energy emitters are fixed to the frame as well as to the instrument. At any point in time, the location and orientation of the frame relative to the sensors as well as the location and orientation of the instrument relative to the sensors are both determined, and the differences in their locations and orientations are used to compute the location and orientation of the instrument relative to the frame. This computed location of the instrument is then used to display the synthesized image of the surgical instrument in an appropriate relationship to the scanned image.
Still another approach to stereotactic surgery, generally known as “frameless image-guided” stereotactic surgery, does not rely on attaching a frame to the body before scanning. Instead, adhesive fiducial scanning markers are applied to the scalp, or small screws are inserted into the skull, and the patient is scanned as in the techniques described above. During surgery, the patient is immobilized and locked in place using a head clamp or a frame. The image-guided stereotactic approach described above is then followed, including the registration procedure described above to establish the locations of the fiducial scanning markers relative to the instrument.
In image-guided techniques, a surgeon can rely on a variety of views of a three dimensional scanned image. These views can include a three-dimensional surface view with an adjustable point of view (e.g., a perspective view with surface shading). In addition, planar (i.e., two-dimensional) views of the image can be displayed. In particular, three two-dimension “slices” through orthogonal planes of the image are typically displayed, with the orientations of the planes being sagittal (dividing a head into a left and a right part), coronal (dividing a head into a front and a back part), and axial (dividing a head into an upper and lower part). As the orientations of the planes are predetermined, the particular planes that are displayed can be determined by the point of intersection of the three planes. A point, such as the tip of a probe, can be displayed in a three-dimensional surface view as a point in a appropriate geometric relationship. The point can be displayed in a planer view by orthogonally projecting the point onto the associated plane. A line can be displayed in a planar view as an orthogonal projection onto the associated plane, or as the point of intersection of the line an
Franck Joel I.
Franklin Ronald J.
Haer Frederick C.
Fish & Richardson P.C.
Manuel George
Neutar L.L.C.
LandOfFree
Movable arm locator for stereotactic surgery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Movable arm locator for stereotactic surgery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Movable arm locator for stereotactic surgery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2985188