Chemistry: electrical current producing apparatus – product – and – Having movable mechanical means to provide relative motion... – Means moves electrode
Reexamination Certificate
2000-03-15
2002-10-01
Ver Steeg, Steven H. (Department: 1753)
Chemistry: electrical current producing apparatus, product, and
Having movable mechanical means to provide relative motion...
Means moves electrode
C429S068000, C429S006000, C429S006000
Reexamination Certificate
active
06458480
ABSTRACT:
BACKGROUND OF INVENTION
1. Field of Invention
The present invention relates to improvements in metal-air fuel cell battery (FCB) systems and devices, and more particularly to a movable anode design for use in such systems and devices in order to obtain improvements in charging and discharging of the anode structures employed therein.
2. Brief Description of the Prior Art
The use of metal-air FCB systems and devices for electrical power generation offers great promise for the future of mankind.
U.S. Pat. No. 5,250,370 to Faris discloses an exemplary metal-air FCB system. According this metal-air FCB system design, a bifunctional air electrode is arranged on one side of a rotating anode structure, for carrying out discharging and recharging operations.
Also, WIPO Publications WO 99/18627, WO 99/18628 and WO 99/18620 by Applicant disclose various types of metal-air FCB systems employing moving anode and cathode structures which can be used to generate electrical power for a variety of applications using a metal, such as zinc, and air as fuel. However despite the incredible advances that such metal-air FCB systems represent to the electrical power industry, there nevertheless remain a number technical problems which limit the recharging performance of such electrical power generation systems. In large part, such problems are due to a number of factors, including: (i) the deformation of shape/geometry of the anode structure; (ii) densification of the anode structure; and (iii) formation dendrites on the anode structure which reach through the separator, touch the air electrode, and eventually short out the cell. In general, such anode related problems have limited the operational life of prior art rechargeable FCB systems and devices.
Hitherto, prior art solutions to these problems have typically involved decreasing the current density of the anode structure during both discharging and recharging operation, as well as the depth of discharge thereof. Both of these side-effects have severely limited the energy and power density characteristics of prior art metal-air FCB systems. Thus, in prior art metal-air FCB systems and devices, there has been a serious trade off between achieving high energy/power densities and good charging characteristics.
Also, when using prior art techniques, it has not been possible to construct a bifunctional air electrode for use in metal-air FCB systems which operates in an efficient manner during both recharging and discharging operations.
Another problem with prior art FCB systems is that the anode structure undergoes deformation during the lifetime of the system. When the anode undergoes deformation during each recycling/recharging operation, the capacity of the system decreases significantly, and shorting problems often occur.
One attempt to solve the anode deformation problem has been to use a reticulated sponge-like zinc anode in order to increase the surface area of the zinc (and thus decrease the current density therewithin). However, the lowered current density decreases the energy density of the FCB system. Also, the use of a reticulated sponge-like zinc anode does not prevent the growth of dendrites on the anode.
Attempts by others have been made to limit dendrite growth on reticulated zinc anode structures. One approach has involved using a chemically inert coating on the exterior of the anode structure. While this reduces dendrite growth, the loss of the anode area lowers the capacity of the cell.
Prior art attempts to reduce anode deformation have involved the use of a pump to circulate the electrolyte. By continually stirring the electrolyte within the cell, a more uniform distribution of zinc ions in solution will result. A uniform mixture of zinc ions in the electrolyte can greatly reduce anode shape deformation over repeated cycling.
U.S. Pat. No. 3,663,298 discloses a method of reducing anode shape deformation and dendrite growth. According to this prior art approach, zinc pellets and electrolyte are used to fill about ⅔ of the volume of a circular rotating drum, on the walls of which the air electrode is formed. The drum rotates during discharging and recharging operations, and the zinc particle bed continually mixes within the cell. Because the particles move freely, fresh zinc continually and evenly is exposed to the air electrode. By evenly depositing zinc during recharging operations, a longer discharge life can be achieved at higher current densities.
U.S. Pat. No. 3,663,298 discloses that the use of a rotatable electrode improves the recharging characteristics of metal-air FCB systems. As disclosed, this technique enables repeated recharging and discharging a rotating electrode at rates up to 100 mA/cm
2
. Conventional zinc electrodes do not ordinarily withstand recharge rates in excess of 20 mA/cm
2
on repeated cycling without rapid failure by dendrite shorting. The high recharging rates were possible because the continual movement of the particle bed provided for a smooth, dendrite free, zinc coating on the pellets.
While rotatable electrode concept of U.S. Pat. No. 3,663,298 improved upon conventional zinc/air FCB technology, it required the use of an inefficient bifunctional air electrode.
Bifunctional air electrodes have very low cycle numbers because the electrode has to be used both for charging and discharging. Bi-functional electrodes are inefficient for discharging because they must simultaneously be optimized for recharging. In addition, prior art bi-functional electrodes are generally thick and heavy to slow down degradation processes. Their significant weight and size reduces the energy density of the system. In the past, others have tried using many different catalysts and different electrode structures to make bifunctional air electrodes with improved performance characteristics, but the lives of prior art rechargeable zinc-air FCB systems have been severely limited.
In the Sony Corporation publication entitled “Fuel Cell and their Application” published in 1996 (at pg. 160), there is disclosed a rechargeable metal/air FCB system design employing a third electrode. This FCB system comprises a zinc anode sandwiched between one recharging air electrode and one discharging air electrode. This prior art approach to metal-air FCB construction sought to eliminate the need for a bifunctional air electrode. According to the approach, the zinc anode would be discharged from one side and recharged from the opposite side, while using different discharging an d recharging electrodes that are optimized for their independent functions.
While Sony's zinc/air cell was an improvement on the bifunctional air electrode, the zinc anode could only be discharged form one side, thus reducing the power capabilities of the cell by 50%. Further, the zinc anode is charged from the side where it was discharged the least, which decreases the efficiency of the system.
Another problem presented by the Sony design is that the anode has to be a porous structure so that the electrolyte can flow from the discharge side to the recharge side to provide ions in solution from discharging in order to recharge again.
Thus, there is a great need in the art for an improved way of and means for producing electrical power using a rechargeable metal-air FCB system having high energy density, high power density, and good rechargeability, while overcoming the shortcomings and drawbacks of prior art technology.
OBJECTS OF THE PRESENT INVENTION
Accordingly, it is a primary object of the present invention is to provide an improved rechargeable metal-air FCB system having high energy density, high power density, and good rechargeability.
Another object of the present invention is to provide a metal-air FCB system having metal anodes which do not undergo any significant shape deformation (i.e. change) during charging and discharging operations, in order to ensure a longer battery life.
Another object of the present invention is to provide such a metal-air FCB system, wherein dendrite formation on metal anodes is controlled.
Another object of the present
Morris William F.
Tsai Tsepin
Crispino Ralph J.
Perkowski Esq., PC Thomas J.
Reveo Inc.
Ver Steeg Steven H.
LandOfFree
Movable anode fuel cell battery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Movable anode fuel cell battery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Movable anode fuel cell battery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2967316