Mounting system for high-voltage semiconductor device

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S707000, C361S709000, C361S710000, C361S713000, C361S718000, C361S719000, C257S718000, C257S719000, C257S727000, C165S080300, C165S185000

Reexamination Certificate

active

06587344

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to mounting systems for semiconductor devices as used in electronic equipment, and more particularly to mounting devices for high-voltage devices.
2. Description of Related Art
Certain semiconductor devices are designed to handle relatively high voltages in a compact space. For example, semiconductor devices that are exposed to RMS voltages greater than 100 VAC, such as 265 VAC or 415 VAC, are often mounted in electronic power supplies and the like. These devices may dissipate relatively large amounts of power, and are accordingly often mounted to heat sinks or like devices as well as being electrically connected to electronic equipment of various types.
Many such semiconductor devices for power applications are commonly available in the JEDEC standard TO-
220
package (www.jedec.org). An exemplary TO-
220
package
110
is shown in
FIG. 2
in conjunction with a mounting system according to the invention. The TO-
220
package has a body
112
with leads
114
exiting the package
110
on one side, and a mounting flange
116
protruding from the other side of body
112
. Internal to package
110
, a semiconductor die (not shown) is attached to a heat spreader that is integral with the mounting flange
116
. The mounting flange
116
has a hole
118
for mounting the package
110
. High-voltage semiconductor devices may also be available in various other packages similar to the TO-
220
package.
Some prior art methods of mounting TO-
220
packages and like devices involve attaching the package to a heat sink or other substrate using a threaded fastener (e.g., a screw) or rivet that passes through the mounting hole
118
. While screw mounting may be convenient for low-volume production, the use of screws often involves assembling multiple other components besides the screws and the component to be mounted, such as threaded nuts or plates and washers of various types. The assembly of multiple components may substantially increase the cost of mounting the device. In addition, many high-voltage applications require electrical isolation between the device and its mounting substrate, which may further increase mounting costs because of the addition of insulating washers and bushings. Screws are also subject to loosening due to vibration, and assembly of screw-mounted components can be difficult to automate. Tool clearance, which uses valuable space, should also be provided in equipment using threaded fasteners. Some of these disadvantages may be avoided by using rivets instead of screws, but rivets may involve higher component costs and can make it difficult to rework or replace the mounted device.
In general, whether screws, rivets, or other fasteners are used, the system of mounting the package to a substrate using a mounting hole through a protruding flange suffers from other disadvantages. The single mounting point may not prevent a semiconductor device from rotating around its mounting hole, making it more difficult to align and attach an assembled device to an electronic component such as a printed circuit board. The clamping force provided by the fastener is not centered over the body of the package, where it would be most effective for transferring heat from the body. Instead, the clamping force is centered on the flange which increases the path length and thermal resistance between the heat source (the semiconductor die) and the heat sink. Electrical insulating materials used as washers or bushings with the fastener may also increase thermal resistance. Increased thermal resistance, in turn, may cause undesirably high operating temperatures for the semiconductor die.
Other prior art mounting systems provide a heat sink configured as a spring clip that may be clipped directly to the package body. These systems also suffer from disadvantages. Heat sink materials should be highly thermally conductive, such as are aluminum and copper, but most thermally conductive metals are relatively soft and make poor spring materials. Accordingly, the clamping force provided by a spring clip made with thermally conductive metals is too low for optimum heat transfer. More exotic materials may be used for spring clip-type heat sinks, such as beryllium copper alloys, but these materials are relatively expensive, and are less thermally conductive than cheaper materials such as aluminum or copper. Spring clips, which typically are configured in arcuate shapes, are generally not capable of achieving good thermal contact over the entire flat side of a semiconductor body. Spring clip-type heat sinks suffer from the further disadvantage of requiring the package leads to support the package and the entire heat sink, which can contribute to failure of the semiconductor device in vibration environments.
Still other prior art systems use a clip to compress the body of a semiconductor package against a flat surface of a heat sink. This avoids the disadvantages of using an extending flange as the mounting surface, while enabling the spring clip to be made of a more suitable spring material. The spring clip in these designs need not be a good thermal conductor because it no longer functions as the primary conductive thermal path. A drawback of prior art systems of this type is that they have been relatively bulky. One prior art system requires a screw for attaching the spring clamp to the heat sink. The use of a screw attachment brings associated disadvantages similar to those mentioned above. Another prior art system avoids the use of a screw by wedging one end of a spring clip into a special slot of the heat sink while using the other end of the spring clip to compress a semiconductor device against the heat sink. This configuration is also relatively bulky, and requires a specially shaped heat sink and/or spring clip for each different application.
None of the aforementioned prior-art systems provide for precise alignment of the semiconductor device relative to the heat sink, which may make it difficult to automate assembly of the system to printed circuit boards or other components. Furthermore, each of the aforementioned systems requires an undesirable trade-off between high-voltage safety and operating temperature. High-voltage safety may be improved by enclosing the semiconductor package in an insulating material. Prior-art systems commonly use a silicone rubber tubing as the insulating material, but this material suffers from the disadvantage of being a poor thermal conductor, which contributes to higher operating temperatures. Silicone rubber is also soft and subject to cut-through at the pressure line of a spring clip, which can lead to electrical shorting between the spring clip and the body of the semiconductor package.
It is desired, therefore, to provide a mounting system for a semiconductor device that overcomes the limitations of prior-art mounting systems. The mounting system should be inexpensive, compact, easy to assemble using automated processes, readily disassembled for rework or repair, versatile (i.e., a standardized system that may be readily used with various different configurations of heat sinks), rugged, reliable, and safe for use with high-voltage devices, while providing superior heat transfer from the device to the heat sink.
SUMMARY OF THE INVENTION
The present invention provides a mounting system for a semiconductor device that overcomes the limitations of prior-art mounting systems, and is particularly suitable for mounting high-voltage semiconductor devices to heat sinks in a compact fashion.
The mounting system is for mounting a semiconductor package such as a JEDEC TO-
220
to a heat sink. The system may be applied to any semiconductor package having a semiconductor die, a heat spreader, a body of non-conductive material around the semiconductor die, and a plurality of leads extending from the body. The package may optionally include a mounting flange extending from the body. The mounting flange may have a through hole. The heat sink may be of any suitable configuration that includes a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mounting system for high-voltage semiconductor device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mounting system for high-voltage semiconductor device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mounting system for high-voltage semiconductor device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3063138

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.